Skip to main content

PiggyBac Toolbox

  • Protocol
  • First Online:
Mobile Genetic Elements

Part of the book series: Methods in Molecular Biology ((MIMB,volume 859))

Abstract

The PiggyBac (PB) transposon system was originally derived from the cabbage looper moth Trichoplusia ni and represents one of the most promising transposon systems to date. Engineering of the PB transposase enzyme (PBase) and its cognate transposon DNA elements resulted in a substantial increase in transposition activities. Consequently, this has greatly enhanced the versatility of the PB toolbox. It is now widely used for stable gene delivery into a broad variety of cell types from different species, including mammalian cells. This opened up new perspectives for potential therapeutic applications in the fields of gene therapy and regenerative medicine. In particular, we have recently demonstrated that PB transposons could be used to stably deliver genes into human CD34+ hematopoietic stem cells (HSCs) resulting in sustained transgene expression in its differentiated progeny. The PB transposon system is particularly attractive for the generation of induced pluripotent stem cells (iPS). Typically, this can be accomplished by stable gene transfer of genes encoding one or more reprogramming factors (i.e., c-MYC, KLF-4, OCT-4, and/or SOX-2). We have generated a PB-based nonviral reprogramming toolbox that contains different combinations of these reprogramming genes. The main advantage of using this PB toolbox for iPS generation is that the reprogramming cassette can be excised by de novo transposase expression, without leaving any molecular trace in the target cell genome. This “traceless excision” paradigm obviates potential risks associated with inadvertent re-expression of reprogramming factors in the iPS progeny. These various applications in gene therapy, stem cell engineering, and regenerative medicine underscore the emerging versatility of the PB toolbox.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BSA:

Bovine serum albumin

CAG:

CMV early enhancer/chicken b-actin promoter

CFU-E:

Erythroid colony forming unit

CFU-GM:

Granulocyte/monocyte/macrophage colony forming unit

ePB:

Enhanced PB system (14)

FACS:

Fluorescence-activated Cell Sorter

GFP:

Green fluorescence protein

hFlt3-L:

Human FMS-like tyrosine kinase 3-ligand

hIL-3:

Human interleukin-3

hIL-6:

Human interleukin-6

HSCs:

Hematopoietic stem cells

hSCF:

Human stem cell factor

hTPO:

Human thrombopoietin

hyPB:

Hyperactive PB (10)

iPS:

Induced pluripotent stem cells

IRs:

Inverted terminal repeats

mPB:

Codon-optimized mouse PB (19)

PB:

PiggyBac

PBase:

PB transposase enzyme

PBaseCO-MT :

Human or mouse codon-optimized PB transposase (Chuah-VandenDriessche lab, unpublished)

References

  1. Fraser MJ, Smith GE, Summers MD (1983) Acquisition of Host Cell DNA Sequences by Baculoviruses: Relationship Between Host DNA Insertions and FP Mutants of Autographa californica and Galleria mellonella Nuclear Polyhedrosis Viruses. J Virol 47:287–300

    PubMed  CAS  Google Scholar 

  2. Fraser MJ, et al. (1996) Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol Biol 5:141–151

    Article  PubMed  CAS  Google Scholar 

  3. Craig NL, Eickbush TH, Voytas DF (2010) Welcome to mobile DNA. Mob DNA 1:1

    Google Scholar 

  4. Rad R, et al. (2010) PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. Science 330:1104–1107

    Article  PubMed  CAS  Google Scholar 

  5. Chew SK, Rad R, Futreal PA, Bradley A, Liu P (2011) Genetic screens using the piggyBac transposon. Methods 53:366–371

    Google Scholar 

  6. Bjork BC, et al. (2010) A transient transgenic RNAi strategy for rapid characterization of gene function during embryonic development. PLoS One 5:e14375

    Article  PubMed  CAS  Google Scholar 

  7. Balu B, et al. (2010) A genetic screen for attenuated growth identifies genes crucial for intraerythrocytic development of Plasmodium falciparum. PLoS One 5:e13282

    Article  PubMed  Google Scholar 

  8. Balu B, et al. (2009) piggyBac is an effective tool for functional analysis of the Plasmodium falciparum genome. BMC Microbiol 9:83

    Article  PubMed  Google Scholar 

  9. Labbe GM, Nimmo DD, Alphey L (2010) piggybac- and PhiC31-mediated genetic transformation of the Asian tiger mosquito, Aedes albopictus (Skuse). PLoS Negl Trop Dis 4:e788

    Article  PubMed  Google Scholar 

  10. Yusa K, et al. (2011) A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci USA 108:1531–1536

    Article  PubMed  CAS  Google Scholar 

  11. Yusa K, et al. (2009) Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods 6:363–369

    Article  PubMed  CAS  Google Scholar 

  12. Woltjen K, et al. (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–70

    Article  PubMed  CAS  Google Scholar 

  13. Kaji K, et al. (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771–775

    Article  PubMed  CAS  Google Scholar 

  14. Lacoste A, Berenshteyn F, Brivanlou AH (2009) An efficient and reversible transposable system for gene delivery and lineage-specific differentiation in human embryonic stem cells. Cell Stem Cell 5:332–342

    Article  PubMed  CAS  Google Scholar 

  15. Wang W, et al. (2008) Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc Natl Acad Sci USA 105:9290–9295

    Article  PubMed  CAS  Google Scholar 

  16. Saridey SK, et al. (2009) PiggyBac transposon-based inducible gene expression in vivo after somatic cell gene transfer. Mol Ther 17:2115–20

    Article  PubMed  CAS  Google Scholar 

  17. Mates L, et al. (2009) Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet 41:753–761

    Article  PubMed  CAS  Google Scholar 

  18. Ding S, et al. (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473–483

    Article  PubMed  CAS  Google Scholar 

  19. Cadinanos J, Bradley A (2007) Generation of an inducible and optimized piggyBac transposon system. Nucleic Acids Res 35:e87

    Article  PubMed  Google Scholar 

  20. Nakanishi H, et al. (2010) piggyBac transposon-mediated long-term gene expression in mice. Mol Ther 18:707–714

    Article  PubMed  CAS  Google Scholar 

  21. Cavazzana-Calvo M, et al. (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288:669–72

    Article  PubMed  CAS  Google Scholar 

  22. Aiuti A, et al. (2009) Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 360:447–458

    Article  PubMed  CAS  Google Scholar 

  23. Rethwilm A (2007) Foamy virus vectors: an awaited alternative to gammaretro- and lentiviral vectors. Curr Gene Ther 7:261–71

    Article  PubMed  CAS  Google Scholar 

  24. Bauer TR Jr, et al. (2008) Successful treatment of canine leukocyte adhesion deficiency by foamy virus vectors. Nat Med 14:93–97

    Article  PubMed  CAS  Google Scholar 

  25. Kohn DB (2008) Gene therapy for childhood immunological diseases. Bone Marrow Transplant 41:199–205

    Article  PubMed  CAS  Google Scholar 

  26. Grabundzija I, Irgang M, Mates L, Belay E, Mátrai J, Gogol-Doring A, Kawakami K, Chen W, Ruiz P, Chuah MK, VandenDriessche T, Izsvak Z, Ivics Z (2010). Comparative analysis of transposable element vector systems in human cells. Mol Ther 18: 1200–1209

    Article  PubMed  CAS  Google Scholar 

  27. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  28. Takahashi K, T, et al. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872

    Article  PubMed  CAS  Google Scholar 

  29. Nakagawa M, et al. (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106

    Article  PubMed  CAS  Google Scholar 

  30. Okita K, et al. (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949–953

    Article  PubMed  CAS  Google Scholar 

  31. Stadtfeld M, et al. (2008) Induced pluripotent stem cells generated without viral integration. Science 322:945–949

    Article  PubMed  CAS  Google Scholar 

  32. Kim JB, et al. (2009) Direct reprogramming of human neural stem cells by OCT4. Nature 461:649–643

    Article  PubMed  CAS  Google Scholar 

  33. Tsai SY, et al. (2010) Oct4 and klf4 reprogram dermal papilla cells into induced pluripotent stem cells. Stem Cells 28:221–8

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the 7th EU framework programme (grant agreement no 222878, PERSIST) FWO, GOA EPIGEN (VUB), EHA, and AFM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marinee K. L. Chuah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Di Matteo, M., Mátrai, J., Belay, E., Firdissa, T., VandenDriessche, T., Chuah, M.K.L. (2012). PiggyBac Toolbox. In: Bigot, Y. (eds) Mobile Genetic Elements. Methods in Molecular Biology, vol 859. Humana Press. https://doi.org/10.1007/978-1-61779-603-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-603-6_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-602-9

  • Online ISBN: 978-1-61779-603-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics