Skip to main content

Detection and Phylogenetic Assessment of Conserved Synteny Derived from Whole Genome Duplications

  • Protocol
  • First Online:
Evolutionary Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 855))

Abstract

Identification of intragenomic conservation of gene compositions in multiple chromosomal segments led to evidence of whole genome (WGDs) duplications. The process by which WGDs have been maintained and decayed provides us with clues for understanding how the genome evolves. In this chapter, we summarize current understanding of phylogenetic distribution and evolutionary impact of WGDs, introduce basic procedures to detect conserved synteny, and discuss typical pitfalls, as well as biological insights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van de Peer, Y., Maere, S., Meyer, A. (2009) The evolutionary significance of ancient genome duplications. Nat Rev Genet, 10, 725–32.

    Article  PubMed  Google Scholar 

  2. Kuraku, S., Meyer, S. (2010) “Whole Genome Duplications and the Radiation of Vertebrates in Evolution after Gene Duplication. Pp. 299–311.” Katharina Dittmar and David Liberles, Eds. Wiley-Blackwell, NY.

    Google Scholar 

  3. Ohno, S.: Evolution by gene duplication. New York: Springer-Verlag; 1970.

    Google Scholar 

  4. Lundin, L. G. (1993) Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. Genomics, 16, 1–19.

    Article  PubMed  CAS  Google Scholar 

  5. Holland, P. W., Garcia-Fernandez, J., Williams, N. A., Sidow, A. (1994) Gene duplications and the origins of vertebrate development. Dev. Sppl., 125–133.

    Google Scholar 

  6. Sidow, A. (1996) Gen(om)e duplications in the evolution of early vertebrates. Curr Opin Genet Dev, 6, 715–22.

    Article  PubMed  CAS  Google Scholar 

  7. Endo, T., Imanishi, T., Gojobori, T., Inoko, H. (1997) Evolutionary significance of intra-genome duplications on human chromosomes. Gene, 205, 19–27.

    Article  PubMed  CAS  Google Scholar 

  8. Kasahara, M., Hayashi, M., Tanaka, K., Inoko, H., Sugaya, K., Ikemura, T., Ishibashi, T. (1996) Chromosomal localization of the proteasome Z subunit gene reveals an ancient chromosomal duplication involving the major histocompatibility complex. Proc Natl Acad Sci U S A, 93, 9096–101.

    Article  PubMed  CAS  Google Scholar 

  9. Katsanis, N., Fitzgibbon, J., Fisher, E. M. (1996) Paralogy mapping: identification of a region in the human MHC triplicated onto human chromosomes 1 and 9 allows the prediction and isolation of novel PBX and NOTCH loci. Genomics, 35, 101–8.

    Article  PubMed  CAS  Google Scholar 

  10. Pebusque, M. J., Coulier, F., Birnbaum, D., Pontarotti, P. (1998) Ancient large-scale genome duplications: phylogenetic and linkage analyses shed light on chordate genome evolution. Mol Biol Evol, 15, 1145–59.

    Article  PubMed  CAS  Google Scholar 

  11. Thornton, J. W. (2001) Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions. Proc Natl Acad Sci U S A, 98, 5671–6.

    Article  PubMed  CAS  Google Scholar 

  12. Kuraku, S., Meyer, A., Kuratani, S. (2009) Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? Mol Biol Evol, 26, 47–59.

    Article  PubMed  CAS  Google Scholar 

  13. Dehal, P., Boore, J.L. (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol, 3, e314.

    Google Scholar 

  14. Meyer, A., Schartl, M. (1999) Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol, 11, 699–704.

    Article  PubMed  CAS  Google Scholar 

  15. Meyer, A., Van de Peer, Y. (2005) From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). Bioessays, 27, 937–45.

    Article  PubMed  CAS  Google Scholar 

  16. Fawcett, J. A., Maere, S., Van de Peer, Y. (2009) Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc Natl Acad Sci U S A, 106, 5737–42.

    Article  PubMed  CAS  Google Scholar 

  17. Renwick, J. H. (1971) The mapping of human chromosomes. Annu Rev Genet, 5, 81–120.

    Article  PubMed  CAS  Google Scholar 

  18. Passarge, E., Horsthemke, B., Farber, R. A. (1999) Incorrect use of the term synteny. Nat Genet, 23, 387.

    Article  PubMed  CAS  Google Scholar 

  19. Hubbard, T. J., Aken, B. L., Ayling, S., Ballester, B., Beal, K., Bragin, E., Brent, S., Chen, Y., Clapham, P., Clarke, L., et al. (2009) Ensembl 2009. Nucleic Acids Res, 37, D690–7.

    Article  PubMed  CAS  Google Scholar 

  20. Haider, S., Ballester, B., Smedley, D., Zhang, J., Rice, P., Kasprzyk, A. (2009) BioMart Central Portal – unified access to biological data. Nucleic Acids Res, 37, W23–7.

    Article  PubMed  CAS  Google Scholar 

  21. Jacobs, G. H. (1993) The distribution and nature of colour vision among the mammals. Biol Rev Camb Philos Soc, 68, 413–71.

    Article  PubMed  CAS  Google Scholar 

  22. Davies, W. L., Carvalho, L. S., Cowing, J. A., Beazley, L. D., Hunt, D. M., Arrese, C. A. (2007) Visual pigments of the platypus: a novel route to mammalian colour vision. Curr Biol, 17, R161–3.

    Article  PubMed  CAS  Google Scholar 

  23. Alioto, T. (2012) Gene prediction. In Anisimova, M., (ed.), Evolutionary genomics: statistical and computational methods (volume 1). Methods in Molecular Biology, Springer Science+Business media, LLC.

    Google Scholar 

  24. Picardi, E., Pesole, G.: Computational methods for ab Initio and comparative gene finding. In: Data Mining Techniques for the Life Sciences Edited by O Carugo, F Eisenhaber, vol. 609: Springer Verlag; 2010.

    Google Scholar 

  25. Stanke, M., Waack, S. (2003) Gene prediction with a Hidden-Markov model and a new intron submodel. Bioinformatics, 19, Suppl. 2, pages ii215-ii225.

    Google Scholar 

  26. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25, 3389–402.

    Article  PubMed  CAS  Google Scholar 

  27. Wolfe, K. H. (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet, 2, 333–41.

    Article  PubMed  CAS  Google Scholar 

  28. Van de Peer, Y., Meyer, A.: Large-scale gene and ancient genome duplications. In: The Evolution of the Genome Edited by R Gregory: Elsevier; 2005.

    Google Scholar 

  29. Altenhoff, A. M., Dessimoz, C. (2012) Inferring orthology and paralogy. In Anisimova, M., (ed.), Evolutionary genomics: statistical and computational methods (volume 1). Methods in Molecular Biology, Springer Science+Business media, LLC.

    Google Scholar 

  30. Gabaldon, T. (2008) Large-scale assignment of orthology: back to phylogenetics? Genome Biol, 9, 235.

    Article  PubMed  Google Scholar 

  31. Jurka, J., Kapitonov, V. V., Pavlicek, A., Klonowski, P., Kohany, O., Walichiewicz, J. (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res, 110, 462–7.

    Article  PubMed  CAS  Google Scholar 

  32. Simillion, C., Janssens, K., Sterck, L., Van de Peer, Y. (2008) i-ADHoRe 2.0: an improved tool to detect degenerated genomic homology using genomic profiles. Bioinformatics, 24, 127–8.

    Article  PubMed  CAS  Google Scholar 

  33. Catchen, J. M., Conery, J. S., Postlethwait, J. H. (2009) Automated identification of conserved synteny after whole-genome duplication. Genome Res, 19, 1497–505.

    Article  PubMed  CAS  Google Scholar 

  34. Muffato, M., Louis, A., Poisnel, C. E., Roest Crollius, H. (2010) Genomicus: a database and a browser to study gene synteny in modern and ancestral genomes. Bioinformatics, 26, 1119–21.

    Article  PubMed  CAS  Google Scholar 

  35. Aris-Brosou, S., Rodrigue, N. (2012) The essentials of computational molecular evolution. In Anisimova, M., (ed.), Evolutionary genomics: statistical and computational methods (volume 1). Methods in Molecular Biology, Springer Science+Business media, LLC.

    Google Scholar 

  36. Kuraku, S., Meyer, A. (2009) The evolution and maintenance of Hox gene clusters in vertebrates and the teleost-specific genome duplication. Int J Dev Biol, 53, 765–73.

    Article  PubMed  CAS  Google Scholar 

  37. Larhammar, D., Lundin, L. G., Hallbook, F. (2002) The human Hox-bearing chromosome regions did arise by block or chromosome (or even genome) duplications. Genome Res, 12, 1910–20.

    Article  PubMed  CAS  Google Scholar 

  38. Carroll, S. B., Grenier, J. K., Weatherbee, S. D.: From DNA to diversity: molecular genetics and the evolution of animal design. Malden, Mass.: Blackwell Science; 2001.

    Google Scholar 

  39. Kusserow, A., Pang, K., Sturm, C., Hrouda, M., Lentfer, J., Schmidt, H. A., Technau, U., von Haeseler, A., Hobmayer, B., Martindale, M. Q., et al (2005) Unexpected complexity of the Wnt gene family in a sea anemone. Nature, 433, 156–60.

    Article  PubMed  CAS  Google Scholar 

  40. Deonier, R. C., Tavaré, S., Waterman, M. S.: Computational genome analysis: an introduction. New York: Springer; 2005.

    Google Scholar 

  41. Furlong, R. F., Holland, P. W. (2002) Were vertebrates octoploid? Philos Trans R Soc Lond B Biol Sci, 357, 531–44.

    Article  PubMed  CAS  Google Scholar 

  42. Force, A., Lynch, M., Pickett, F.B., Amores, A., Yan, Y.L., Postlethwait, J. (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics, 151, 1531–45.

    PubMed  CAS  Google Scholar 

  43. Lynch, M., O’Hely, M., Walsh, B., Force, A. (2001) The probability of preservation of a newly arisen gene duplicate. Genetics, 159, 1789–804.

    PubMed  CAS  Google Scholar 

  44. Hughes, T., Ekman, D., Ardawatia, H., Elofsson, A., Liberles, D. A. (2007) Evaluating dosage compensation as a cause of duplicate gene retention in Paramecium tetraurelia. Genome Biol, 8, 213.

    Article  PubMed  Google Scholar 

  45. Daubin, V., Gouy, M., Perriere, G. (2001) Bacterial molecular phylogeny using supertree approach. Genome Inform, 12, 155–64.

    PubMed  CAS  Google Scholar 

  46. Kuraku, S. (2010) Palaeogenomics of the vertebrate ancestor―impact of hidden paralogy in hagfish and lamprey gene phylogeny. Integr Comp Biol, 50, 124–129.

    Article  PubMed  CAS  Google Scholar 

  47. Maere, S., De Bodt, S., Raes, J., Casneuf, T., Van Montagu, M., Kuiper, M., Van de Peer, Y. (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci U S A, 102, 5454–9.

    Article  PubMed  CAS  Google Scholar 

  48. Dennis, G., Jr., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C., Lempicki, R. A. (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol, 4, P3.

    Article  PubMed  Google Scholar 

  49. Beissbarth, T., Speed, T. P. (2004) GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics, 20, 1464–5.

    Article  PubMed  CAS  Google Scholar 

  50. Al-Shahrour, F., Minguez, P., Tarraga, J., Medina, I., Alloza, E., Montaner, D., Dopazo, J. (2007) FatiGO+: a functional profiling tool for genomic data. Integration of functional annotation, regulatory motifs and interaction data with microarray experiments. Nucleic Acids Res, 35, W91–6.

    Article  PubMed  Google Scholar 

  51. Lynch, V. J., Wagner, G. P. (2009) Multiple chromosomal rearrangements structured the ancestral vertebrate Hox-bearing protochromosomes. PLoS Genet, 5, e1000349.

    Article  PubMed  Google Scholar 

  52. Manousaki, T., Feiner, N., Begemann, G., Meyer, A., Kuraku, S. (2011) Co-orthology of Pax4 and Pax6 to the fly eyeless gene: molecular phylogenetic, comparative genomic, and embryological analyses. Evol Dev, 13, 448–459.

    Google Scholar 

  53. Braasch, I., Volff, J. N., Schartl, M. (2009) The endothelin system: evolution of vertebrate-specific ligand-receptor interactions by three rounds of genome duplication. Mol Biol Evol, 26, 783–99.

    Article  PubMed  CAS  Google Scholar 

  54. Kuraku, S., Takio, Y., Sugahara, F., Takechi, M., Kuratani, S. (2010) Evolution of oropharyngeal patterning mechanisms involving Dlx and endothelins in vertebrates. Dev Biol, 341, 315–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigehiro Kuraku .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kuraku, S., Meyer, A. (2012). Detection and Phylogenetic Assessment of Conserved Synteny Derived from Whole Genome Duplications. In: Anisimova, M. (eds) Evolutionary Genomics. Methods in Molecular Biology, vol 855. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-582-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-582-4_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-581-7

  • Online ISBN: 978-1-61779-582-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics