Skip to main content

Application of SBDD to the Discovery of New Antibacterial Drugs

  • Protocol
  • First Online:
Structure-Based Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 841))

Abstract

The emergence of bacteria that are multiply resistant to commonly used antibiotics has created the medical need for novel classes of antibacterial agents. The unique challenges to the discovery of new antibacterial drugs include the following: spectrum, selectivity, low emergence of new resistance, and high potency. With the emergence of genomic information, dozens of antibacterial targets have been pursued over the last 2 decades often using SBDD. This chapter reviews the application of structure-based drug design approaches on a selected group of antibacterial targets (DHFR, DHNA, PDF, and FabI) where significant progress has been made. We compare and contrast the different approaches and evaluate the results in terms of the biological profiles of the leads produced. Several common themes have emerged from this survey, resulting in a set of recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arias, C. A. and Murray B. (2009) Antibiotic-Resistant Bugs in the 21st Century: A Clinical Super-Challenge. N. Engl. J. Med. 360, 439–443.

    Article  PubMed  CAS  Google Scholar 

  2. Boucher, H.W., Talbot, G. H., Bradley, J.S., Edwards, J. E., Gilbert, D., Rice, L. B., Scheld, M., Spellberg, B. and Bartlett, J. (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Diseases 48, 1–12.

    Article  Google Scholar 

  3. Giske, C., Monnet, D., Cars, O. and Carmeli, Y. (2008) Clinical and Economic Impact of Common Multidrug-Resistant Gram-Negative Bacilli. Antimicrob. Agents Chemother. 52, 813–821.

    Article  PubMed  CAS  Google Scholar 

  4. Overbye, K. and Barrett, J. (2005) Antibiotics: where did we go wrong? Drug Discovery Today 10, 45–52.

    Article  PubMed  Google Scholar 

  5. Bush, K. (2004) Antibacterial drug discovery in the 21st century. Clin. Microbiol. Infect. Suppl. 4, 10–17.

    Article  Google Scholar 

  6. Payne, D., Gwynn, M., Holmes, D. and Pompliano, D. (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Disc. 6, 29–40.

    Article  CAS  Google Scholar 

  7. Stein, J. (2005) Innovative antibacterial drugs: nothing ventured, nothing gained. Expert Opin. Investig. Drugs 14, 107.

    Article  PubMed  CAS  Google Scholar 

  8. Kompis, I., Islam, K. and Then, R. (2005) DNA and RNA Synthesis: Antifolates Chem. Rev. 105, 593–620.

    Article  PubMed  CAS  Google Scholar 

  9. Bushby, S. R. (1973) Trimethoprim-sulfamethoxazole. In vitro microbiological aspects. J. Infect. Diseases 128(Suppl.) S442–S462.

    Google Scholar 

  10. Canton, R., Loza, E., Morosini, M. and Baquero, F. (2002) Antimicrobial resistance amongst isolates of Streptococcus pyogenes and Staphylococcus aureus in the PROTEKT antimicrobial surveillance program during 1999-2000. J. Antimicrob. Chemother. 50(Suppl. S1), 9–24.

    Google Scholar 

  11. Dale, G., Broger, C., D’Arcy, A., Hartman, P., DeHoogt, R., Jolidon, S., Kompis, I., Labhardt, A., Langen, H., Locher, H., Page, M., Stueber, D., Then, R., Wipf, B. and Oefner, C. (1997) A single amino acid substitution in Staphylococcus aureus dihydrofolate reductase determines trimethoprim resistance. J. Mol. Bio. 266, 23–30.

    Article  CAS  Google Scholar 

  12. Vickers, A., Potter, N., Fishwick, C., Chopra, I. and O’Neill, A. (2009) Analysis of mutational resistance to trimethoprim in Staphylococcus aureus by genetic and structural modelling techniques. J. Antimicrob. Chemother. 63, 1112–1117.

    Article  PubMed  CAS  Google Scholar 

  13. Kujundzic, N., Kovacevic, K., Jakovina M. and Gluncic, B. (1988) Synthesis and antibacterial effect of derivatives of 5-(3,4,5-trimethoxybenzyl)pyrimidine, -tetrahydropyrimidine, -hexahydropyrimidine and -hydantoin. Croatica Chemica Acta 61, 121–35.

    CAS  Google Scholar 

  14. Summerfield, R., Daigle, D., Mayer, S., Mallik, D., Hughes, D., Jackson, S., Sulek, M., Organ, M., Brown, E. and Junop, M. (2006) Pharmacophoric Features of Biguanide Derivatives: An Electronic and Structural Analysis. J. Med. Chem. 49, 6977–6986

    Article  PubMed  CAS  Google Scholar 

  15. Kohlhoff, S. and Sharma, R. (2007) Iclaprim. Expert Opin. Invest. Drugs 16, 1441–1448.

    Article  CAS  Google Scholar 

  16. Peppard, W. and Schuenke, C. (2008) Iclaprim, a diaminopyrimidine dihydrofolate reductase inhibitor for the potential treatment of antibiotic-resistant staphylococcal infections. Curr. Opin. Invest. Drugs 9, 210–225.

    CAS  Google Scholar 

  17. Schneider, P., Hawser, S. and Islam, K. (2003) Iclaprim, a novel diaminopyrimidine with potent activity on trimethoprim sensitive and resistant bacteria. Bioorg. Med. Chem. Lett. 13, 4217–4221.

    Article  PubMed  CAS  Google Scholar 

  18. Oefner, C., Bandera, M., Haldimann, A., Laue, H., Schulz, H., Mukhija, S., Parisi, S., Weiss, L., Lociuro, S. and Dale, G. (2009) Increased hydrophobic interactions of Iclaprim with Staphylococcus aureus dihydrofolate reductase are responsible for the increase in affinity and antibacterial activity. J. Antimicrob. Chemother. 63, 687–698.

    Article  PubMed  CAS  Google Scholar 

  19. Hawser, S., Haldimann, A., Parisi, S., Gillessen, D. and Islam, K. (2002) “AR-100, A Novel Diaminopyrimidine Compound: resistance studies in Trimethoprim-Sensitive and –Resistant Staphylococcus aureus42 nd ICAAC Meeting; San Diego, CA (poster F-2028).

    Google Scholar 

  20. Brandt, R., Neuenhofer, D., Thomsen, T., Hadvary, P. and Islam, K. (2007) “Pharmacokinetics and bioavailability of Iclaprim oral and intravenous formulations in humans” 47 th ICAAC Meeting; Chicago, IL (poster A-806).

    Google Scholar 

  21. Krievins, D., Brandt, R., Hawser, S., Hadvary, P. and Islam, K. (2009) Multicenter, randomized study of the efficacy and safety of intravenous iclaprim in complicated skin and skin structure infections. Antimicrob. Agents Chemother. 53, 2834–2840.

    Article  PubMed  CAS  Google Scholar 

  22. Wyss, P., Guerry, P., Hartman, P., Hubschwerlen, C., Jolidon, S., Locher, H., Specklin, J. and Stalder, H. (1999) “Anti-MRSA Dihydrofolate Reductase Inhibitors: Synthesis and SAR” 39 th ICAAC Meeting; San Francisco, CA (poster F-1800).

    Google Scholar 

  23. Locher, H., Wyss, P., Then, R. and Hartman, P. (1999) “Anti-MRSA Dihydrofolate Reductase Inhibitors: Biological Characterization” 39 th ICAAC Meeting; San Francisco, CA (poster F-1801).

    Google Scholar 

  24. Mukhija, S., Bandera, M., Parisi, S., Rigo, S., Lieb, S., Lociuro, S., Gillessen, D. and Islam, K. (2005) “AR-709 – An Investigational diaminopyrimidine: Inhibition, Binding and Mode of Action” 47 th ICAAC Meeting; Chicago, IL (poster F1-1955).

    Google Scholar 

  25. Jansen, W., Verel, A., Verhoef, J. and Milatovic, D. (2008) In vitro activity of AR - 709 against Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy 52, 1182–1183.

    Article  PubMed  CAS  Google Scholar 

  26. Hawser, S., Bihr, M., Weiss, L., Islam, K. and Lociuro, S. (2007) “AR-709, A Novel Diaminopyrimidine Compound: Resistance Studies in Trimethoprim-sensitive and -resistant Bacteria” 47 th ICAAC Meeting; Chicago, IL (poster F1-1960).

    Google Scholar 

  27. Lappin, G., Warrington, S., Sanghera, D., Dowen, S., Lister, N., Islam, K. and Lociuro, S. (2007) “Plasma Pharmacokinetics Of AR-709 Administered to Male Healthy Volunteers as Microdoses by the Intravenous and Oral Route” 47 th ICAAC Meeting; Chicago, IL (poster F1-939).

    Google Scholar 

  28. Wyss, P., Gerber, P., Hartman, P., Hubschwerlen, C., Locher, H., Marty, H. and Stahl, M. (2003) Novel Dihydrofolate Reductase Inhibitors. Structure-Based versus Diversity-Based Library Design and High-Throughput Synthesis and Screening. J. Med. Chem. 46, 2304–2312.

    Article  PubMed  CAS  Google Scholar 

  29. Sanders, W., Nienaber, V., Lerner, C., McCall, J., Merrick, S., Swanson, S., Harlan, J., Stoll, V., Stamper, G., Betz, S., Condroski, K., Meadows, R., Severin, J., Walter, K., Magdalinos, P., Jakob, C., Wagner, R. and Beutel, B. (2004) Discovery of Potent Inhibitors of Dihydroneopterin Aldolase Using CrystaLEAD High-Throughput X-ray Crystallographic Screening and Structure-Directed Lead Optimization. J. Med. Chem. 47, 1709–1718.

    Article  PubMed  CAS  Google Scholar 

  30. Lever, O. W., Bell, L. N., Hyman, C., McGuire, H. M. and Ferone, R. (1986) Inhibitors of dihydropteroate synthase: substituent effects in the side-chain aromatic ring of 6-[[3-(aryloxy)propyl]amino]-5-nitrosoisocytosines and synthesis and inhibitory potency of bridged 5-nitrosoisocytosine-p-aminobenzoic acid analogs. J. Med. Chem. 29, 665–670.

    Article  PubMed  CAS  Google Scholar 

  31. Lever, O. W., Bell, L. N., McGuire, H. M. and Ferone, R. (1985) Monocyclic pteridine analogs. Inhibition of Escherichia coli dihydropteroate synthase by 6-amino-5-nitrosoisocytosines. J. Med. Chem. 28, 1870–1874.

    Article  PubMed  CAS  Google Scholar 

  32. Aubart, K. and Zalacain, M. (2006) Peptide Deformylase Inhibitors Prog. Med. Chem. 44 109–143.

    Article  PubMed  CAS  Google Scholar 

  33. Jain, R., Chen, D., White, R.J., Patel, D.V. and Yuan, Z. (2005) Bacterial Peptide Deformylase Inhibitors: A New Class of Antibacterial Agents Curr. Med. Chem. 12 1607–1621.

    Article  PubMed  CAS  Google Scholar 

  34. Smith, K., Petit, C., Aubart, K., Smyth, M., McManus, E., Jones, J., Fosberry, A., Lewis, C., Lonetto, M. and Christensen, S. (2003) Structural variation and inhibitor binding in polypeptide deformylase from four different bacterial species. Prot. Sci. 12, 349–360.

    Article  CAS  Google Scholar 

  35. East, S., Beckett, R., Brookings, D., Clements, J., Doel, S., Keavey, K., Pain, G., Smith, H., Thomas, W., Thompson, A., Todd, R. and Whittaker, M. (2004) Peptide deformylase inhibitors with activity against respiratory tract pathogens. Bioorg. Med. Chem. Lett. 14, 59–62.

    Article  PubMed  CAS  Google Scholar 

  36. Azoulay-Dupuis, E., Mohler, J. and Bedos, J. (2004) Efficacy of BB-83698, a Novel Peptide Deformylase Inhibitor, in a Mouse Model of Pneumococcal Pneumonia. Antimicrob. Agents Chemother. 48, 80–85.

    Article  PubMed  CAS  Google Scholar 

  37. Clements, J., Beckett, R., Brown, A., Catlin, G., Lobell, M., Palan, S., Thomas, W., Whittaker, M., Wood, St., Salama, S., Baker, P., Rodgers, H., Barynin, V., Rice, D. and Hunter, M. (2001) Antibiotic Activity and Characterization of BB-3497, a Novel Peptide Deformylase Inhibitor. Antimicrob. Agents Chemother. 45, 563–570.

    Article  PubMed  CAS  Google Scholar 

  38. Davies, S., Ayscough, A., Beckett, R., Clements, J., Doel, S., Pratt, L., Spavold, Z., Thomas, S. and Whittaker, M. (2003) Structure-Activity Relationships of the Peptide Deformylase Inhibitor BB-3497: Modification of the P2′ and P3′ Side Chains. Bioorg. Med. Chem. Lett. 13, 2715–2718.

    Article  PubMed  CAS  Google Scholar 

  39. Ramanathan-Girish, S., McColm, J., Clements, J., Taupin, P., Barrowcliffe, S., Hevizi, J., Safrin, S., Moore, C., Patou, G., Moser, H., Gadd, A., Hoch, Ute, Jiang, V., Lofland, D. and Johnson, K. (2004) Pharmacokinetics in Animals and Humans of a First-in-Class Peptide Deformylase Inhibitor. Antimicrob. Agents Chemother. 48, 4835–4842.

    Article  PubMed  CAS  Google Scholar 

  40. Chen, D., Hackbarth, C., Ni, Z., Wu, C., Wang, W., Jain, R., He, Y., Bracken, K., Weidmann, B., Patel, D., Trias, J., White, R. and Yuan, Z. (2004) Peptide Deformylase Inhibitors as Antibacterial agents: Identification of BRC3375, a Proline-3-Alkylsuccinyl Hydroxamate Derivative, by Using an Integrated Combinatorial and Medicinal Chemistry Approach. Antimicrob. Agents Chemother. 48, 250–261.

    Article  PubMed  CAS  Google Scholar 

  41. Hackbarth, C., Chen, D., Lewis, J., Clark, K., Mangold, J., Cramer, J., Margolis, P., Wang, W., Koehn, J., Wu, C., Lopez, S., Withers, G., Gu, H., Dunn, E., Kulathila, R., Pan, S., Porter, W., Jacobs, J., Trias, J., Patel, D., Weidmann, B., White, R. and Yuan, Z. (2002) N-Alkyl Urea Hydroxamic Acids as a New Class of Peptide Deformylase Inhibitors with Antibacterial Activity. Antimicrob. Agents Chemother. 46, 2752–2764.

    Article  PubMed  CAS  Google Scholar 

  42. Aubart, K., Benowitz, A., Campobasso, N., Dreabit, J., Fang, Y., Karpinski, J., Kelly, S., Liao, X., Lee, J., Mercer, D., Lewandowski, T., VanAller, G., Zonis, R., Christensen, S. and Zalacain, M. (2010) “Hydrazinopyrimidines as a New Class of Peptide Deformylase Inhibitors” 50 th ICAAC Meeting: Boston, MA (poster F1-2110).

    Google Scholar 

  43. Qin, D., Fang, Y., Benowitz, A., Liao, X., Karpinski, J., Dreabit, J., Knox, A., Kelly, S., Axten, J., Mercer, D., Kulkarni, S., Campobasso, N., Zonis, R., VanAller, G., Christensen, S., Zalacain, M. and Aubart, K. (2010) “Peptide Deformylase Inhibitors: Discovery of a Clinical Candidate from a Novel Chemical Class” 50 th ICAAC Meeting: Boston, MA (poster F1-2111).

    Google Scholar 

  44. Margolis, P., Hackbarth, C., Young, D., Wang, W., Chen, D., Yuan, Z., White, R. and Trias, J. (2000) Peptide Deformylase in Staphylococcus aureus: Resistance to Inhibition Is Mediated by Mutations in the Formyltransferase Gene. Antimicrob. Agents Chemother. 44, 1825–1831.

    Article  PubMed  CAS  Google Scholar 

  45. Lu, H. and Tonge, P. (2008) Inhibitors of FabI, an Enzyme Drug Target in the Bacterial Fatty Acid Biosynthesis Pathway. Accounts Chem. Res. 41, 11–20.

    Article  CAS  Google Scholar 

  46. Payne, D. J., Warren, P. V., Holmes, D. J., Ji, Y. and Lonsdale, J. T. (2001) Bacterial fatty-acid biosynthesis: a genomics-driven target for antibacterial drug discovery. Drug Disc. Today 6, 537–544.

    Article  CAS  Google Scholar 

  47. Seefeld, M. A., Miller, W. H., Newlander, K. A., Burgess, W. J., Payne, D. J., Rittenhouse, S. F., Moore, T. D., DeWolf, W. E., Keller, P. M., Qiu, X., Janson, C. A., Vaidya, K., Fosberry, A. P., Smyth, M. G., Jaworski, D. D., ­Slater-Radosti, C. and Huffman, W. F. (2001) Inhibitors of bacterial enoyl acyl carrier protein reductase (FabI): 2,9-disubstituted 1,2,3,4-tetrahydropyrido[3,4-b]indoles as potential antibacterial agents. Bioorg. Med. Chem. Lett. 11, 2241–2244.

    Article  PubMed  CAS  Google Scholar 

  48. Heerding, D. A., Chan, G., DeWolf, W. E., Fosberry, A. P., Janson, C. A., Jaworski, D. D., McManus, E., Miller, W. H., Moore, T. D., Payne, D. J., Qiu, X., Rittenhouse, S. F., Slater-Radosti, C., Smith, W., Takata, D. T., Vaidya, K. S., Yuan, C. C. K. and Huffman, W. F. (2001) 1,4-Disubstituted imidazoles are potential antibacterial agents functioning as inhibitors of enoyl acyl carrier protein reductase (FabI). Bioorg. Med. Chem. Lett. 11, 2061–2065.

    Article  PubMed  CAS  Google Scholar 

  49. Miller, W. H., Seefeld, M. A., Newlander, K. A., Uzinskas, I. N., Burgess, W. J., Heerding, D. A., Yuan, C. C. K., Head, M. S., Payne, D. J., Rittenhouse, S. F., Moore, T. D., Pearson, S. C., Berry, V., DeWolf, W. E., Jr., Keller, P. M., Polizzi, B. J., Qiu, X., Janson, C. A. and Huffman, W. F. (2002) Discovery of Aminopyridine-Based Inhibitors of Bacterial Enoyl-ACP Reductase (FabI). J. Med. Chem. 45, 3246–3256.

    Article  PubMed  CAS  Google Scholar 

  50. Seefeld, M. A., Miller, W. H., Newlander, K. A., Burgess, W. J., DeWolf, W. E. Jr., Elkins, P. A., Head, M. S., Jakas, D. R., Janson, C. A., Keller, P. M., Manley, P. J., Moore, T. D., Payne, D. J., Pearson, S., Polizzi, B. J., Qiu, X., Rittenhouse, S. F., Uzinskas, I. N., Wallis, N. G. and Huffman, W. F. (2003) Indole Naphthyridinones as Inhibitors of Bacterial Enoyl-ACP Reductases FabI and FabK. J. Med. Chem. 46, 1627–1635.

    Article  PubMed  CAS  Google Scholar 

  51. Payne, D. J., Miller, W. H., Berry, V., Brosky, J., Burgess, W. J., Chen, E., DeWolf, W. E., Jr., Fosberry, A. P., Greenwood, R., Head, M. S., Heerding, D. A., Janson, C. A., Jaworski, D. D., Keller, P. M., Manley, P. J. Moore, T. D., Newlander, K. A., Pearson, S., Polizzi, B. J., Qiu, X., Rittenhouse, S. F., Slater-Radosti, C., Salyers, K. L., Seefeld, M. A., Smyth, M. G., Takata, D. T., Uzinskas, I. N., Vaidya, K., Wallis, N. G., Winram, S. B., Yuan, C. C. K. and Huffman, W. F. (2002) Discovery of a novel and potent class of FabI-directed antibacterial agents. Antimicrob. Agents Chemother. 46, 3118–3124.

    Article  PubMed  CAS  Google Scholar 

  52. Karlowsky, J. A., Laing, N. M., Baudry, T., Kaplan, N., Vaughan, D., Hoban, D. J. and Zhanel, G. G. (2007) In vitro activity of API - 1252, a novel FabI inhibitor, against clinical isolates of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob. Agents Chemother. 51, 1580–1581.

    Article  PubMed  CAS  Google Scholar 

  53. Karlowsky J. A., Kaplan N., Hafkin B., Hoban D. J. and Zhanel G. G. (2009) AFN- 1252, a FabI inhibitor, demonstrates a Staphylococcus-specific spectrum of activity. Antimicrob. Agents Chemother. 53, 3544–3548.

    Article  PubMed  CAS  Google Scholar 

  54. Yum, J. H., Kim, C. K., Yong, D., Lee, K., Chong, Y., Kim, C. M., Kim, J. M. Ro, S. and Cho, J. M. (2007) In vitro activities of CG400549, a novel FabI inhibitor, against recently isolated clinical staphylococcal strains in Korea. Antimicrob. Agents Chemother. 51, 2591–2593.

    Article  PubMed  CAS  Google Scholar 

  55. Bogdanovich, T., Clark, C., Kosowska-Shick, K., Dewasse, B., McGhee, P. and Appelbaum, P. C. (2007) Antistaphylococcal activity of CG400549, a new experimental FabI inhibitor, compared with that of other agents. Antimicrob. Agents Chemother. 51, 4191–4195.

    Article  PubMed  CAS  Google Scholar 

  56. Kitagawa, H., Ozawa, T., Takahata, S., Iida, M., Saito, J. and Yamada, M. (2007) Phenylimidazole Derivatives of 4-Pyridone as Dual Inhibitors of Bacterial Enoyl-Acyl Carrier Protein Reductases FabI and FabK. J. Med. Chem. 50, 4710–4720.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Finn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Finn, J. (2012). Application of SBDD to the Discovery of New Antibacterial Drugs. In: Tari, L. (eds) Structure-Based Drug Discovery. Methods in Molecular Biology, vol 841. Humana Press. https://doi.org/10.1007/978-1-61779-520-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-520-6_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-519-0

  • Online ISBN: 978-1-61779-520-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics