Skip to main content

Comparing Fungal Genomes: Insight into Functional and Evolutionary Processes

  • Protocol
  • First Online:
Plant Fungal Pathogens

Part of the book series: Methods in Molecular Biology ((MIMB,volume 835))

Abstract

Large amount of genome data are being generated by second- and now also third-generation sequencing technologies. The challenge no longer lies in the generation of the data, but in the analyses of it. We present an overview of approaches and methods to compare complete sequences of related fungal genomes. We focus on evolutionary analyses of genome alignments to describe species divergence and to identify footprints of demography and natural selection within and between species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, et al. (2004) Genome evolution in yeasts. Nature 430: 35–44.

    Article  PubMed  Google Scholar 

  2. Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, et al. (2006) Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 38: 953–956.

    Article  PubMed  CAS  Google Scholar 

  3. Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J, et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464: 367–373.

    Google Scholar 

  4. Wittenberg AHJ, van der Lee TAJ, Ben M’Barek S, Ware SB, Goodwin SB, et al. (2009) Meiosis Drives Extraordinary Genome Plasticity in the Haploid Fungal Plant Pathogen Mycosphaerella graminicola. PLoS ONE 4: e5863.

    Article  PubMed  Google Scholar 

  5. Poláková S, Blume C, Zárate J, Mentel M, Jarck-Ramberg D, et al. (2009) Formation of new chromosomes as a virulence mechanism in yeast Candida glabrata. Proceedings of the National Academy of Sciences 106: 2688–2693.

    Article  Google Scholar 

  6. Delcher AL, Phillippy A, Carlton J, Salzberg SL (2002) Fast algorithms for large-scale genome alignment and comparison. pp. 2478–2483.

    Google Scholar 

  7. Stukenbrock EH, Jørgensen FG, Zala M, Hansen TT, McDonald BA, Schierup MH (2010). Whole genome and chromosome evolution associated with host adaptation and speciation of the wheat pathogen Mycosphaerella graminicola. PLoS Genet 6(12): e1001189. doi:10.1371/journal.pgen.1001189.

    Google Scholar 

  8. Stukenbrock EH, Bataillon T, Dutheil JY, Hansen TT, Li R, Zala M, McDonald BA, Wang J, Schierup MH (2011). The making of a new pathogen: Insights from comparative population genomics of the domesticated wheat pathogen Mycosphaerella graminicola and its wild sister species. Genome Research. doi: 10.1101/gr.118851.110.

    Google Scholar 

  9. Goodwin SB, Ben M’Barek S, Dhillon B, Wittenberg A, Crane CF, et al. (2010). Finished genome of Mycosphaerella graminicola reveals stealth pathogenesis and extreme plasticity. PLoS Genet 7(6): e1002070. doi:10.1371/journal.pgen.1002070.

    Google Scholar 

  10. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.

    Article  PubMed  CAS  Google Scholar 

  11. Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AFA, et al. (2004) Aligning Multiple Genomic Sequences With the Threaded Blockset Aligner. Genome Research 14: 708–715.

    Article  PubMed  CAS  Google Scholar 

  12. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, et al. (2003) Human–Mouse Alignments with BLASTZ. Genome Research 13: 103–107.

    Article  PubMed  CAS  Google Scholar 

  13. Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24: 713–714.

    Article  PubMed  CAS  Google Scholar 

  14. Langmead B, Trapnell C, Pop M, Salzberg S (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology 10: R25.

    Article  PubMed  Google Scholar 

  15. Darling AE, Mau B, Perna NT progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement. PLoS ONE 5: e11147.

    Google Scholar 

  16. Höhl M, Kurtz S, Ohlebusch E (2002) Efficient multiple genome alignment. Bioinformatics 18: S312–S320.

    Article  PubMed  Google Scholar 

  17. Schirawski J, Mannhaupt G, Karin M, Brefort T, Schipper K, et al. (2010), Pathogenicity determinants in smut fungi revealed by genome comparison. Science 10;330(6010):1546–1548.

    Google Scholar 

  18. Penel S, Arigon A-M, Dufayard J-F, Sertier A-S, Daubin V, et al. (2009) Databases of homologous gene families for comparative genomics. BMC Bioinformatics 10: S3.

    Article  PubMed  Google Scholar 

  19. Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423: 241–254.

    Article  PubMed  CAS  Google Scholar 

  20. Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  21. Kent WJ (2002) BLAT—The BLAST-Like Alignment Tool. Genome Research 12: 656–664.

    PubMed  CAS  Google Scholar 

  22. Price AL, Jones NC, Pevzner PA (2005) De novo identification of repeat families in large genomes. Bioinformatics 21: 351–358.

    Article  Google Scholar 

  23. Pevzner PA, Tang H, Tesler G (2004) De Novo Repeat Classification and Fragment Assembly. Genome Research 14: 1786–1796.

    Article  PubMed  CAS  Google Scholar 

  24. Ellinghaus D, Kurtz S, Willhoeft U (2008) LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics 9: 18.

    Article  PubMed  Google Scholar 

  25. Galtier N, Duret L (2007) Adaptation or biased gene conversion? Extending the null hypothesis of molecular evolution. Trends in Genetics 23: 273–277.

    Article  PubMed  CAS  Google Scholar 

  26. Duret L, Arndt PF (2008) The Impact of Recombination on Nucleotide Substitutions in the Human Genome. PLoS Genet 4: e1000071.

    Article  PubMed  Google Scholar 

  27. Nei M, Kumar S (2000) Molecular Evolution and Phylogenetics. Oxford: Oxford University Press.

    Google Scholar 

  28. Dutheil JY, Ganapathy G, Hobolth A, Mailund T, Uyenoyama MK, et al. (2009) Ancestral Population Genomics: The Coalescent Hidden Markov Model Approach. Genetics: genetics.109.103010.

    Google Scholar 

  29. Eyre-Walker A (2006) The genomic rate of adaptive evolution. Trends in Ecology & Evolution 21: 569–575.

    Article  Google Scholar 

  30. Smith NGC, Eyre-Walker A (2002) Adaptive protein evolution in Drosophila. Nature 415: 1022–1024.

    Article  PubMed  CAS  Google Scholar 

  31. Welch JJ (2006) Estimating the Genomewide Rate of Adaptive Protein Evolution in Drosophila. Genetics 173: 821–837.

    Article  PubMed  CAS  Google Scholar 

  32. Yang Z (2007) PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol Biol Evol 24: 1586–1591.

    Article  PubMed  CAS  Google Scholar 

  33. Yang Z, Nielsen R (2000) Estimating Synonymous and Nonsynonymous Substitution Rates Under Realistic Evolutionary Models. Mol Biol Evol 17: 32–43.

    Article  PubMed  CAS  Google Scholar 

  34. Yang Z, Nielsen R (2002) Codon-Substitution Models for Detecting Molecular Adaptation at Individual Sites Along Specific Lineages. Mole­cular Biology and Evolution 19: 908–917.

    Article  PubMed  CAS  Google Scholar 

  35. McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351: 652–654.

    Article  PubMed  CAS  Google Scholar 

  36. Woolf B (1957) The log likelihood ratio test (the G-test) Annals of Human Genetics 21: 397–409.

    Article  PubMed  CAS  Google Scholar 

  37. Hochberg YBaY (1995) Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B 57: 289–300.

    Google Scholar 

  38. Team RDC (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva H. Stukenbrock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Stukenbrock, E.H., Dutheil, J.Y. (2012). Comparing Fungal Genomes: Insight into Functional and Evolutionary Processes. In: Bolton, M., Thomma, B. (eds) Plant Fungal Pathogens. Methods in Molecular Biology, vol 835. Humana Press. https://doi.org/10.1007/978-1-61779-501-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-501-5_33

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-500-8

  • Online ISBN: 978-1-61779-501-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics