Skip to main content

A Yeast Secretion Trap Assay for Identification of Secreted Proteins from Eukaryotic Phytopathogens and Their Plant Hosts

  • Protocol
  • First Online:
Plant Fungal Pathogens

Part of the book series: Methods in Molecular Biology ((MIMB,volume 835))

Abstract

Secreted proteins from plants and phytopathogens play important roles in their interactions and contribute to elaborate mechanisms of attack, defense, and counter-defense, as well as surveillance and signaling. There is therefore considerable interest in developing techniques to characterize “secretomes.” Here, we describe the use of the yeast secretion trap (YST) functional screen to isolate and identify secreted proteins that are accumulated and detected in the extracellular matrix of eukaryotes. This method involves fusing cDNAs generated or derived from plants, pathogens, or infected tissue to a yeast (Saccharomyces cerevisiae) invertase (suc2) reporter gene lacking its signal peptide, transforming the resulting fusion library into an invertase-deficient yeast strain, and plating the transformants on a sucrose selection medium. A yeast transformant containing a cDNA that encodes a secreted protein can rescue the mutant and the plasmid DNA can then be sequenced to identify the secreted protein. The YST screen can be a very powerful tool in the study of dynamics of plant host-pathogen interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee, S.-J., Kelley, B., Damasceno, C.M.B., St. John, B., Kim, B.-S. Kim, B.-D., and Rose, J.K.C. (2006) A functional screen to characterize the secretomes of eukaryotic phytopathogens and their hosts in planta. Mol. Plant Microbe Interact. 19, 1368–1377.

    Article  PubMed  CAS  Google Scholar 

  2. Kamoun, S. (2006) A catalogue of the effector secretome of plant pathogenic oomycetes. Annu. Rev. Phytopathol. 44, 41–60.

    Article  PubMed  CAS  Google Scholar 

  3. Hardham, A.R. and Cahill, D.M. (2010) The role of oomycete effectors in plant–pathogen interactions. Funct. Plant Biol. 37, 919–925.

    Article  CAS  Google Scholar 

  4. Hok, S., Attard, A., Keller, H. (2010) Getting the most from the host: how pathogens force plants to cooperate in disease. Mol. Plant-Microbe Interact. 23, 1253–1259.

    Article  PubMed  CAS  Google Scholar 

  5. Kelley, B.S., Lee, S.-J., Damasceno, C.M.B., Chakravarthy, S., Kim, B.-D., Martin, G.B. and Rose, J.K.C. (2010) A secreted effector protein (SNE1) from Phytophthora infestans is a broadly acting suppressor of programmed cell death. Plant J. 62, 357–366.

    Article  PubMed  CAS  Google Scholar 

  6. Misas-Villamil, J.C. and van der Hoorn, R.A.L. (2008) Enzyme-inhibitor interactions at the plant-pathogen interface. Curr. Opin. Plant Biol. 11, 380–388.

    Article  PubMed  CAS  Google Scholar 

  7. Oliva, R., Win, J., Raffaele, S., Boutemy, L., Bozkurt, T.O., Chaparro-Garcia, A., Segretin., M.E., Stam, R., Schornack, S., Cano, L.M., Van Damme, M., Huitema, E., Thines, M., Banfield, M.J. and Kamoun, S. (2010) Recent developments in effector biology of filamentous plant pathogens. Cell. Microbiol., 12, 705–715.

    Article  PubMed  CAS  Google Scholar 

  8. Lee, S.-J., Saravanan, R.S., Damasceno, C.M.B., Yamane, H., Kim, B.-D. And Rose, J.K.C. (2004) Digging deeper into the plant cell wall proteome. Plant Physiol. Biochem. 42, 979–988.

    Article  PubMed  CAS  Google Scholar 

  9. Bouws, H., Wattenberg, A., and Zorn, H. (2008) Fungal secretomes-nature’s toolbox for white biotechnology. Appl. Microbiol. Biotechnol. 80, 381–388.

    Article  PubMed  CAS  Google Scholar 

  10. Espino, J.J., Gutiérrez-Sánchez, G., Brito, N., Shah, P., Orlando, R., and González, C. (2010) The Botrytis cinerea early secretome. Proteomics 10, 3020–3034.

    Article  PubMed  CAS  Google Scholar 

  11. Houterman, P.M., Speijer, D., Dekker, H.L., De Koster, C.G., Cornelissen, B.J.C., and Rep, M. (2007) The mixed xylem sap proteome of Fusarium oxysporum-infected tomato plants. Mol. Plant Pathol. 8, 215–221.

    Article  PubMed  CAS  Google Scholar 

  12. Medina, M.L., Kiernan, U.A., and Francisco, W.A. (2004) Proteomic analysis of rutin-induced secreted proteins from Aspergillus flavus. Fungal Genet. Biol. 41, 327–335.

    Article  PubMed  CAS  Google Scholar 

  13. Medina, M.L., Haynes, P.A., Breci, L., and Francisco, W.A. (2005) Analysis of secreted proteins from Aspergillus flavus. Proteomics 5, 3153–3161.

    Article  PubMed  CAS  Google Scholar 

  14. Oda, K., Kakizono, D., Yamada, O., Iefuji, H., Akita, O., and Iwashita, K. (2006) Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions. Appl. Environ. Microbiol. 72, 3448–3457.

    Article  PubMed  CAS  Google Scholar 

  15. Paper, J.M., Scott-Craig, J.S., Adhikari, N.D., Cuomo, C.A., and Walton, J.D. (2007) Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum. Proteomics 7, 3171–3183.

    Article  PubMed  CAS  Google Scholar 

  16. Shah, P., Atwood, J.A., Orlando, R., El, M.H., Podila, G.K., and Davis, M.R. (2009) Comparative proteomic analysis of Botrytis cinerea secretome. J. Proteome Res. 8, 1123–1130.

    Article  PubMed  CAS  Google Scholar 

  17. Shah, P., Gutiérrez-Sánchez, G., Orlando, R., and Bergmann, C. (2009) A proteomic study of pectin-degrading enzymes secreted by Botrytis cinerea grown in liquid culture. Proteomics 9, 3126–3135.

    Article  PubMed  CAS  Google Scholar 

  18. Suarez, M.B., Sanz, L., Chamorro, M.I., Rey, M., González, F.J., Llobell, A., and Monte, E. (2005) Proteomic analysis of secreted proteins from Trichoderma harzianum- identification of a fungal cell wall induced aspartic protease. Fungal Genet. Biol. 42, 924–934.

    Article  PubMed  CAS  Google Scholar 

  19. Tsang, A., Butler, G., Powlowski, J., Panisko, E.A., and Baker, S.E. (2009) Analytical and computational approaches to define the Aspergillus niger secretome. Fungal Genet. Biol. 46, S153–S160.

    Article  PubMed  CAS  Google Scholar 

  20. Yajima, W. and Kav, N.N. (2006) The proteome of the phytopathogenic fungus Sclerotinia sclerotiorum. Proteomics 6, 5995–6007.

    Article  PubMed  CAS  Google Scholar 

  21. Rose, J.K.C. and Lee, S.-J. (2010) Straying off the highway: trafficking of secreted plant proteins and complexity in the plant cell wall proteome. Plant Physiol. 153, 433–436.

    Article  PubMed  CAS  Google Scholar 

  22. Torto, T.A., Li, S., Styer, A., Huitema, E., Testa, A., Gow, N.A.R., van West, P., and Kamoun, S. (2003) EST mining and functional expression assays identify extracellular effector proteins from Phytophthora. Genome Res. 13, 1675–1685.

    Article  PubMed  CAS  Google Scholar 

  23. Lee, S.-J., Kim, B.-D., and Rose, J.K.C. (2006) Identification of eukaryotic secreted and cell surface proteins using the yeast secretion trap (YST) screen. Nat. Protoc. 1, 2439–2447.

    Article  PubMed  CAS  Google Scholar 

  24. Link, T.I. and Voegele, R.T. (2008) Secreted proteins of Uromyces fabae: similarities and stage specificity. Mol. Plant Pathol. 9, 59–66.

    PubMed  CAS  Google Scholar 

  25. Krijger, J.-J., Horbach, R., Behr, M., Schweizer, P., Deising, H.B., and Wirsel, S.G.R. (2008) The yeast signal sequence trap identifies secreted proteins of the hemibiotrophic corn pathogen Colletotrichum graminicola. Mol. Plant Microbe Interact. 21, 1325–1336.

    Article  PubMed  CAS  Google Scholar 

  26. Bendtsen, J.D., Nielsen, H., von Heijne, G., and Brunak, S. (2004) Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research in this area was supported by grants from the NSF Plant Genome Program (DBI-0606595), the New York State Office of Science, Technology and Academic Research (NYSTAR), and Cornell Center for a Sustainable Future (CCSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jocelyn K. C. Rose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lee, SJ., Rose, J.K.C. (2012). A Yeast Secretion Trap Assay for Identification of Secreted Proteins from Eukaryotic Phytopathogens and Their Plant Hosts. In: Bolton, M., Thomma, B. (eds) Plant Fungal Pathogens. Methods in Molecular Biology, vol 835. Humana Press. https://doi.org/10.1007/978-1-61779-501-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-501-5_32

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-500-8

  • Online ISBN: 978-1-61779-501-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics