Skip to main content

Isotope Labeling in Mammalian Cells

  • Protocol
  • First Online:
Protein NMR Techniques

Part of the book series: Methods in Molecular Biology ((MIMB,volume 831))

Abstract

Isotope labeling of proteins represents an important and often required tool for the application of nuclear magnetic resonance (NMR) spectroscopy to investigate the structure and dynamics of proteins. Mammalian expression systems have conventionally been considered to be too weak and inefficient for protein expression. However, recent advances have significantly improved the expression levels of these systems. Here, we provide an overview of some of the recent developments in expression strategies for mammalian expression systems in view of NMR investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nettleship, J. E., Assenberg, R., Diprose, J. M., Rahman-Huq, N., and Owens, R. J. (2010) Recent advances in the production of proteins in insect and mammalian cells for structural biology. J. Struct. Biol. 172, 55–65.

    Google Scholar 

  2. Aricescu, A. R., Lu, W., and Jones, E. Y. (2006) A time- and cost-efficient system for high-level protein production in mammalian cells. Acta. Crystallogr. D Biol. Crystallogr. 62, 1243–1250.

    Google Scholar 

  3. Lee, J. E., Fusco, M. L., and Ollmann Saphire, E. (2009) An efficient platform for screening expression and crystallization of glycoproteins produced in human cells. Nat. Protoc. 4, 592–604.

    Google Scholar 

  4. Nettleship, J. E., Rahman-Huq, N., and Owens, R. J. (2009) The production of glycoproteins by transient expression in mammalian cells. Methods Mol. Biol. 498, 245–263.

    Google Scholar 

  5. Reeves, P. J., Callewaert, N., Contreras, R., and Khorana, H. G. (2002) Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc. Natl. Acad. Sci. U.S.A. 99, 13419–13424.

    Google Scholar 

  6. Sclimenti, C. R., and Calos, M. P. (1998) Epstein-Barr virus vectors for gene expression and transfer. Curr. Opin. Biotechnol. 9, 476–479.

    Google Scholar 

  7. Sambrook, J., Rodgers, L., White, J., and Gething, M. J. (1985) Lines of BPV-transformed murine cells that constitutively express influenza virus hemagglutinin. EMBO J. 4, 91–103.

    Google Scholar 

  8. Grossi, M. P., Caputo, A., Rimessi, P., Chiccoli, L., Balboni, P. G., and Barbanti-Brodano, G. (1988) New BK virus episomal vector for complementary DNA expression in human cells. Arch. Virol. 102, 275–283.

    Google Scholar 

  9. Piechaczek, C., Fetzer, C., Baiker, A., Bode, J., and Lipps, H. J. (1999) A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells. Nucleic Acids Res. 27, 426–428.

    Google Scholar 

  10. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, CSH Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  11. Doerfler, W., Schubbert, R., Heller, H., Kammer, C., Hilger-Eversheim, K., Knoblauch, M., and Remus, R. (1997) Integration of foreign DNA and its consequences in mammalian systems. Trends Biotechnol. 15, 297–301.

    Google Scholar 

  12. Xia, W., Bringmann, P., McClary, J., Jones, P. P., Manzana, W., Zhu, Y., Wang, S., Liu, Y., Harvey, S., Madlansacay, M. R., McLean, K., Rosser, M. P., MacRobbie, J., Olsen, C. L., and Cobb, R. R. (2006) High levels of protein expression using different mammalian CMV promoters in several cell lines. Protein Expr. Purif. 45, 115–124.

    Google Scholar 

  13. Van Craenenbroeck, K., Vanhoenacker, P., and Haegeman, G. (2000) Episomal vectors for gene expression in mammalian cells. Eur. J. Biochem. 267, 5665–5678.

    Google Scholar 

  14. Urlaub, G., and Chasin, L. A. (1980) Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc. Natl. Acad. Sci. U.S.A. 77, 4216–4220.

    Google Scholar 

  15. Grabenhorst, E., Schlenke, P., Pohl, S., Nimtz, M., and Conradt, H. S. (1999) Genetic engineering of recombinant glycoproteins and the glycosylation pathway in mammalian host cells. Glycoconj. J. 16, 81–97.

    Google Scholar 

  16. Suttie, J. W. (1986) Report of Workshop on expression of vitamin K-dependent proteins in bacterial and mammalian cells. Madison, Wisconsin, USA, April 1986, Thromb. Res. 44, 129–134.

    Google Scholar 

  17. Schlaeger, E. J., Kitas, E. A., and Dorn, A. (2003) SEAP expression in transiently transfected mammalian cells grown in serum-free suspension culture. Cytotechnology 42, 47–55.

    Google Scholar 

  18. Takahashi, H., and Shimada, I. (2010) Production of isotopically labeled heterologous proteins in non-E. coli prokaryotic and eukaryotic cells. J. Biomol. NMR 46, 3–10.

    Google Scholar 

  19. Hansen, A. P., Petros, A. M., Mazar, A. P., Pederson, T. M., Rueter, A., and Fesik, S. W. (1992) A practical method for uniform isotopic labeling of recombinant proteins in mammalian cells. Biochemistry 31, 12713–12718.

    Google Scholar 

  20. Lustbader, J. W., Birken, S., Pollak, S., Pound, A., Chait, B. T., Mirza, U. A., Ramnarain, S., Canfield, R. E., and Brown, J. M. (1996) Expression of human chorionic gonadotropin uniformly labeled with NMR isotopes in Chinese hamster ovary cells: an advance toward rapid determination of glycoprotein structures. J. Biomol. NMR 7, 295–304.

    Google Scholar 

  21. Shindo, K., Masuda, K., Takahashi, H., Arata, Y., and Shimada, I. (2000) Backbone 1H, 13C, and 15N resonance assignments of the anti-dansyl antibody Fv fragment. J. Biomol. NMR 17, 357–358.

    Google Scholar 

  22. Archer, S. J., Bax, A., Roberts, A. B., Sporn, M. B., Ogawa, Y., Piez, K. A., Weatherbee, J. A., Tsang, M. L., Lucas, R., Zheng, B. L., and et al. (1993) Transforming growth factor beta 1: NMR signal assignments of the recombinant protein expressed and isotopically enriched using Chinese hamster ovary cells. Biochemistry 32, 1152–1163.

    Google Scholar 

  23. Werner, K., Richter, C., Klein-Seetharaman, J., and Schwalbe, H. (2008) Isotope labeling of mammalian GPCRs in HEK293 cells and characterization of the C-terminus of bovine rhodopsin by high resolution liquid NMR spec-troscopy. J. Biomol. NMR 40, 49–53.

    Google Scholar 

  24. Arata, Y., Kato, K., Takahashi, H., and Shimada, I. (1994) Nuclear magnetic resonance study of antibodies: a multinuclear approach. Methods Enzymol. 239, 440–464.

    Google Scholar 

  25. Klein-Seetharaman, J., Reeves, P. J., Loewen, M. C., Getmanova, E. V., Chung, J., Schwalbe, H., Wright, P. E., and Khorana, H. G. (2002) Solution NMR spectroscopy of (alpha -15N)lysine-labeled rhodopsin: The single peak observed in both conventional and TROSY-type HSQC spectra is ascribed to Lys-339 in the carboxyl-terminal peptide sequence. Proc. Natl. Acad. Sci. U.S.A. 99, 3452–3457.

    Google Scholar 

  26. Klein-Seetharaman, J., Yanamala, N. V., Javeed, F., Reeves, P. J., Getmanova, E. V., Loewen, M. C., Schwalbe, H., and Khorana, H. G. (2004) Differential dynamics in the G protein-coupled receptor rhodopsin revealed by solution NMR. Proc. Natl. Acad. Sci. U.S.A. 101, 3409–3413.

    Google Scholar 

  27. Patel, A. B., Crocker, E., Reeves, P. J., Getmanova, E. V., Eilers, M., Khorana, H. G., and Smith, S. O. (2005) Changes in interhelical hydrogen bonding upon rhodopsin activation. J. Mol. Biol. 347, 803–812.

    Google Scholar 

  28. Han, M., and Smith, S. O. (1995) High-resolution structural studies of the retinal–Glu113 interaction in rhodopsin. Biophys. Chem. 56, 23–29.

    Google Scholar 

  29. Werner, K., Lehner, I., Dhiman, H. K., Richter, C., Glaubitz, C., Schwalbe, H., Klein-Seetharaman, J., and Khorana, H. G. (2007) Combined solid state and solution NMR studies of alpha,epsilon-15N labeled bovine rhodopsin. J. Biomol. NMR 37, 303–312.

    Google Scholar 

  30. Reeves, P. J., Kim, J. M., and Khorana, H. G. (2002) Structure and function in rhodopsin: a tetracycline-inducible system in stable mammalian cell lines for high-level expression of opsin mutants. Proc. Natl. Acad. Sci. U.S.A. 99, 13413–13418.

    Google Scholar 

  31. Reeves, P. J., Callewaert, N., Contreras, R., and Khorana, H. G. (2002) Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line 452. Proc. Natl. Acad. Sci. U.S.A. 99, 13419–13424.

    Google Scholar 

  32. Reeves, P. J., Thurmond, R. L., and Khorana, H. G. (1996) Structure and function in rhodopsin: high level expression of a synthetic bovine opsin gene and its mutants in stable mammalian cell lines. Proc. Natl. Acad. Sci. U.S.A. 93, 11487–11492.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Schwalbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dutta, A., Saxena, K., Schwalbe, H., Klein-Seetharaman, J. (2012). Isotope Labeling in Mammalian Cells. In: Shekhtman, A., Burz, D. (eds) Protein NMR Techniques. Methods in Molecular Biology, vol 831. Humana Press. https://doi.org/10.1007/978-1-61779-480-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-480-3_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-479-7

  • Online ISBN: 978-1-61779-480-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics