Skip to main content

Disulfide Engineering to Map Subunit Interactions in the Proteasome and Other Macromolecular Complexes

  • Protocol
  • First Online:
Ubiquitin Family Modifiers and the Proteasome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 832))

Abstract

In studies of protein complexes for which high-resolution structural data are unavailable, it is often still possible to determine both nearest-neighbor relationships between subunits and atomic-resolution details of these interactions. The eukaryotic 26S proteasome, a ∼2.5 MDa protein complex with at least 33 different subunits, is a prime example. Important information about quaternary organization and assembly of proteasomes has been gained using a combination of sequence alignments with related proteins of known tertiary structure, molecular modeling, and disulfide engineering to allow oxidative cross-linking between predicted polypeptide neighbors. Here, we provide detailed protocols for engineered cysteine cross-linking of yeast proteasome subunits in whole-cell extracts, in active 26S proteasome complexes first isolated by native polyacrylamide gel electrophoresis, and in subcomplexes that function as potential assembly intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen P, Hochstrasser M (1996) Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell 86:961–972.

    Article  PubMed  CAS  Google Scholar 

  2. Arendt CS, Hochstrasser M (1997) Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation. Proc. Natl. Acad. Sci. U.S.A. 94:7156–7161.

    Article  PubMed  CAS  Google Scholar 

  3. Velichutina I, Connerly PL, Arendt CS et al (2004) Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast. Embo J 23:500–510.

    Article  PubMed  CAS  Google Scholar 

  4. Kusmierczyk AR, Kunjappu MJ, Funakoshi M, Hochstrasser M (2008) A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nat Struct Mol Biol 15:237–244.

    Article  PubMed  CAS  Google Scholar 

  5. Tomko RJ, Jr, Funakoshi M, Schneider K et al (2010) Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Mol Cell 38:393–403.

    Article  PubMed  CAS  Google Scholar 

  6. Hochstrasser M (1996) Ubiquitin-dependent protein degradation. Annual Review of Genetics 30:405–439.

    Article  PubMed  CAS  Google Scholar 

  7. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiological Reviews 82:373–428.

    PubMed  CAS  Google Scholar 

  8. Pickart CM, Cohen RE (2004) Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 5:177–187.

    Article  PubMed  CAS  Google Scholar 

  9. Marques AJ, Palanimurugan R, Matias AC et al (2009) Catalytic mechanism and assembly of the proteasome. Chem Rev 109:1509–1536.

    Article  PubMed  CAS  Google Scholar 

  10. Chen P, Hochstrasser M (1995) Biogenesis, structure, and function of the yeast 20S proteasome. EMBO J. 14:2620–2630.

    PubMed  CAS  Google Scholar 

  11. Groll M, Ditzel L, Löwe J et al (1997) Structure of 20S proteasome from yeast at 2.4  Å resolution. Nature 386:463–471.

    Article  PubMed  CAS  Google Scholar 

  12. Fu H, Reis N, Lee Y et al (2001) Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. EMBO Journal 20:7096–7107.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang F, Hu M, Tian G et al (2009) Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol Cell 34:473–484.

    Article  PubMed  Google Scholar 

  14. Djuranovic S, Hartmann MD, Habeck M et al (2009) Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases. Mol Cell 34:580–590.

    Article  PubMed  CAS  Google Scholar 

  15. Verma R, Chen S, Feldman R et al (2000) Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol Biol Cell 11:3425–3439.

    PubMed  CAS  Google Scholar 

  16. Hough R, Pratt G, Rechsteiner M (1987) Purification of two high molecular weight proteases in rabbit reticulocyte lysate. J. Biol. Chem. 262:8303–8313.

    PubMed  CAS  Google Scholar 

  17. Glickman MH, Rubin DM, Fried VA, Finley D (1998) The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol. Cell. Biol. 18:3149–3162.

    PubMed  CAS  Google Scholar 

  18. Elsasser S, Schmidt M, Finley D (2005) Characterization of the proteasome using native gel electrophoresis. Methods Enzymol 398:353–363.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Robb Tomko and Mary Kunjappu for critical reading of the manuscript. Work from our laboratory that led to the development of these cross-linking methods was supported by NIH grants GM046904 and GM083050.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Hochstrasser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hochstrasser, M., Funakoshi, M. (2012). Disulfide Engineering to Map Subunit Interactions in the Proteasome and Other Macromolecular Complexes. In: Dohmen, R., Scheffner, M. (eds) Ubiquitin Family Modifiers and the Proteasome. Methods in Molecular Biology, vol 832. Humana Press. https://doi.org/10.1007/978-1-61779-474-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-474-2_24

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-473-5

  • Online ISBN: 978-1-61779-474-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics