Skip to main content

Assembly and Function of the Proteasome

  • Protocol
  • First Online:
Ubiquitin Family Modifiers and the Proteasome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 832))

Abstract

Proteasome is a highly organized protease complex comprising a catalytic 20S core particle (CP) and two 19S regulatory particles (RP), which together form the 26S structure. The 26S proteasome is responsible for the degradation of most ubiquitylated proteins through a multistep process involving recognition of the polyubiquitin chain, unfolding of the substrate, and translocation of the substrate into the active site in the cavity of the CP. Recent studies have shed light on various aspects of the complex functions of the 26S proteasome. In addition, the recent identification of various proteasome-dedicated chaperones indicates that the assembly pathways of the RP and CP are multistep processes. In this review, we summarize recent advances in the understanding of the proteasome structure, function, and assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varshavsky A (2005) Regulated protein degradation. Trends Biochem Sci 30:283–286.

    Article  PubMed  CAS  Google Scholar 

  2. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428.

    PubMed  CAS  Google Scholar 

  3. Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513.

    Article  PubMed  CAS  Google Scholar 

  4. Richardson PG, Mitsiades C, Hideshima T, Anderson KC (2006) Bortezomib: proteasome inhibition as an effective anticancer therapy. Annu Rev Med 57:33–47.

    Article  PubMed  CAS  Google Scholar 

  5. Orlowski RZ, Kuhn DJ (2008) Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin Cancer Res 14:1649–1657.

    Article  PubMed  CAS  Google Scholar 

  6. Kling J (2010) New twists on proteasome inhibitors. Nat Biotechnol 28:1236–1238.

    Article  PubMed  CAS  Google Scholar 

  7. Groettrup M, Kirk CJ, Basler M (2010) Proteasomes in immune cells: more than peptide producers? Nat Rev Immunol 10:73–78.

    Article  PubMed  CAS  Google Scholar 

  8. Murata S, Takahama Y, Tanaka K (2008) Thymoproteasome: probable role in generating positively selecting peptides. Curr Opin Immunol 20:192–196.

    Article  PubMed  CAS  Google Scholar 

  9. Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65:801–847.

    Article  PubMed  CAS  Google Scholar 

  10. Baumeister W, Walz J, Zuhl F, Seemuller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92:367–380.

    Article  PubMed  CAS  Google Scholar 

  11. Demartino GN, Gillette TG (2007) Proteasomes: machines for all reasons. Cell 129:659–662.

    Article  PubMed  CAS  Google Scholar 

  12. Yoshimura T, Kameyama K, Takagi T et al (1993) Molecular characterization of the “26S” proteasome complex from rat liver. J Struct Biol 111:200–211.

    Article  PubMed  CAS  Google Scholar 

  13. Maupin-Furlow JA, Humbard MA, Kirkland PA et al (2006) Proteasomes from structure to function: perspectives from Archaea. Curr Top Dev Biol 75:125–169.

    Article  PubMed  CAS  Google Scholar 

  14. Groll M, Ditzel L, Lowe J et al (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386:463–471.

    Article  PubMed  CAS  Google Scholar 

  15. Unno M, Mizushima T, Morimoto Y et al (2002) The structure of the mammalian 20S proteasome at 2.75 A resolution. Structure 10:609–618.

    Article  PubMed  CAS  Google Scholar 

  16. Ruschak AM, Religa TL, Breuer S et al (2010) The proteasome antechamber maintains substrates in an unfolded state. Nature 467:868–871.

    Article  PubMed  CAS  Google Scholar 

  17. Baugh JM, Viktorova EG, Pilipenko EV (2009) Proteasomes can degrade a significant proportion of cellular proteins independent of ubiquitination. J Mol Biol 386:814–827.

    Article  PubMed  CAS  Google Scholar 

  18. Liu CW, Corboy MJ, DeMartino GN, Thomas PJ (2003) Endoproteolytic activity of the proteasome. Science 299:408–411.

    Article  PubMed  CAS  Google Scholar 

  19. Jung T, Grune T (2008) The proteasome and its role in the degradation of oxidized proteins. IUBMB Life 60:743–752.

    Article  PubMed  CAS  Google Scholar 

  20. Seifert U, Bialy LP, Ebstein F et al (2010) Immunoproteasomes Preserve Protein Home-ostasis upon Interferon-Induced Oxidative Stress. Cell 142:613–624.

    Article  PubMed  CAS  Google Scholar 

  21. Agarwal AK, Xing C, DeMartino GN et al (2010) PSMB8 encoding the beta5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am J Hum Genet 87:866–872.

    Article  PubMed  CAS  Google Scholar 

  22. Murata S, Sasaki K, Kishimoto T et al (2007) Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 316:1349–1353.

    Article  PubMed  CAS  Google Scholar 

  23. Nitta T, Murata S, Sasaki K et al (2010) Thymoproteasome shapes immunocompetent repertoire of CD8+ T cells. Immunity 32:29–40.

    Article  PubMed  CAS  Google Scholar 

  24. Murata S, Yashiroda H, Tanaka K (2009) Molecular mechanisms of proteasome assembly. Nat Rev Mol Cell Biol 10:104–115.

    Article  PubMed  CAS  Google Scholar 

  25. Glickman MH, Rubin DM, Coux O et al (1998) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94:615–623.

    Article  PubMed  CAS  Google Scholar 

  26. da Fonseca PC, Morris EP (2008) Structure of the human 26S proteasome: subunit radial displacements open the gate into the proteolytic core. J Biol Chem 283:23305–23314.

    Article  PubMed  CAS  Google Scholar 

  27. Nickell S, Beck F, Scheres SH et al (2009) Insights into the molecular architecture of the 26S proteasome. Proc Natl Acad Sci USA 106:11943–11947.

    Article  PubMed  CAS  Google Scholar 

  28. Bohn S, Beck F, Sakata E et al (2010) Structure of the 26S proteasome from Schizo-saccharomyces pombe at subnanometer resolution. Proc Natl Acad Sci USA 107:20992–20997.

    Article  PubMed  CAS  Google Scholar 

  29. Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426:895–899.

    Article  PubMed  CAS  Google Scholar 

  30. Tanaka K, Waxman L, Goldberg AL (1983) ATP serves two distinct roles in protein degradation in reticulocytes, one requiring and one independent of ubiquitin. J Cell Biol 96:1580–1585.

    Article  PubMed  CAS  Google Scholar 

  31. Rechsteiner M, Realini C, Ustrell V (2000) The proteasome activator 11S REG (PA28) and class I antigen presentation. Biochem J 345 Pt 1:1–15.

    Article  PubMed  CAS  Google Scholar 

  32. Sadre-Bazzaz K, Whitby FG, Robinson H et al (2010) Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening. Mol Cell 37:728–735.

    Article  PubMed  CAS  Google Scholar 

  33. Forster A, Masters EI, Whitby FG et al (2005) The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol Cell 18:589–599.

    Article  PubMed  CAS  Google Scholar 

  34. Smith DM, Chang SC, Park S et al (2007) Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s alpha ring opens the gate for substrate entry. Mol Cell 27:731–744.

    Article  PubMed  CAS  Google Scholar 

  35. Rabl J, Smith DM, Yu Y et al (2008) Mecha-nism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol Cell 30:360–368.

    Article  PubMed  CAS  Google Scholar 

  36. Kohler A, Cascio P, Leggett DS et al (2001) The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol Cell 7:1143–1152.

    Article  PubMed  CAS  Google Scholar 

  37. Gillette TG, Kumar B, Thompson D et al (2008) Differential roles of the COOH termini of AAA subunits of PA700 (19S regulator) in asymmetric assembly and activation of the 26S proteasome. J Biol Chem 283:31813–31822.

    Article  PubMed  CAS  Google Scholar 

  38. Kumar B, Kim YC, DeMartino GN (2010) The C terminus of Rpt3, an ATPase subunit of PA700 (19S) regulatory complex, is essential for 26S proteasome assembly but not for activation. J Biol Chem 285:39523–39535.

    Article  PubMed  CAS  Google Scholar 

  39. Saeki Y, Tanaka K (2007) Unlocking the proteasome door. Mol Cell 27:865–867.

    Article  PubMed  CAS  Google Scholar 

  40. Liu CW, Li X, Thompson D et al (2006) ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome. Mol Cell 24:39–50.

    Article  PubMed  CAS  Google Scholar 

  41. Djuranovic S, Hartmann MD, Habeck M et al (2009) Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases. Mol Cell 34:580–590.

    Article  PubMed  CAS  Google Scholar 

  42. Zhang F, Hu M, Tian G et al (2009) Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol Cell 34:473–484.

    Article  PubMed  CAS  Google Scholar 

  43. Smith DM, Kafri G, Cheng Y et al (2005) ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol Cell 20:687–698.

    Article  PubMed  CAS  Google Scholar 

  44. Medalia N, Beer A, Zwickl P et al (2009) Architecture and molecular mechanism of PAN, the archaeal proteasome regulatory ATPase. J Biol Chem 284:22952–22960.

    Article  PubMed  CAS  Google Scholar 

  45. Zhang F, Wu Z, Zhang P et al (2009) Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol Cell 34:485–496.

    Article  PubMed  CAS  Google Scholar 

  46. Schrader EK, Harstad KG, Matouschek A (2009) Targeting proteins for degradation. Nat Chem Biol 5:815–822.

    Article  PubMed  CAS  Google Scholar 

  47. Braun BC, Glickman M, Kraft R et al (1999) The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol 1:221–226.

    Article  PubMed  CAS  Google Scholar 

  48. Saeki Y, Toh-e A, Kudo T et al (2009) Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell 137:900–913.

    Article  PubMed  CAS  Google Scholar 

  49. Kaneko T, Hamazaki J, Iemura S et al (2009) Assembly pathway of the Mammalian proteasome base subcomplex is mediated by multiple specific chaperones. Cell 137:914–925.

    Article  PubMed  CAS  Google Scholar 

  50. Funakoshi M, Tomko RJ, Jr., Kobayashi H, Hochstrasser M (2009) Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell 137:887–899.

    Article  PubMed  CAS  Google Scholar 

  51. Tomko RJ, Jr., Funakoshi M, Schneider K et al (2010) Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Mol Cell 38:393–403.

    Article  PubMed  CAS  Google Scholar 

  52. Rubin DM, Glickman MH, Larsen CN et al (1998) Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J 17:4909–4919.

    Article  PubMed  CAS  Google Scholar 

  53. Deveraux Q, Jensen C, Rechsteiner M (1995) Molecular cloning and expression of a 26S protease subunit enriched in dileucine repeats. J Biol Chem 270:23726–23729.

    Article  PubMed  CAS  Google Scholar 

  54. Elsasser S, Chandler-Militello D, Muller B et al (2004) Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J Biol Chem 279:26817–26822.

    Article  PubMed  CAS  Google Scholar 

  55. Hamazaki J, Sasaki K, Kawahara H et al (2007) Rpn10-mediated degradation of ubiquitinated proteins is essential for mouse development. Mol Cell Biol 27:6629–6638.

    Article  PubMed  CAS  Google Scholar 

  56. Husnjak K, Elsasser S, Zhang N et al (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453:481–488.

    Article  PubMed  CAS  Google Scholar 

  57. Schreiner P, Chen X, Husnjak K et al (2008) Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 453:548–552.

    Article  PubMed  CAS  Google Scholar 

  58. Saeki Y, Tanaka K (2008) Cell biology: two hands for degradation. Nature 453:460–461.

    Article  PubMed  CAS  Google Scholar 

  59. Qiu XB, Ouyang SY, Li CJ et al (2006) hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37. EMBO J 25:5742–5753.

    Article  PubMed  CAS  Google Scholar 

  60. Yao T, Song L, Xu W et al (2006) Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat Cell Biol 8:994–1002.

    Article  PubMed  CAS  Google Scholar 

  61. Hamazaki J, Iemura S, Natsume T et al (2006) A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO J 25:4524–4536.

    Article  PubMed  CAS  Google Scholar 

  62. Chen X, Lee BH, Finley D, Walters KJ (2010) Structure of proteasome ubiquitin receptor hRpn13 and its activation by the scaffolding protein hRpn2. Mol Cell 38:404–415.

    Article  PubMed  CAS  Google Scholar 

  63. Madura K (2004) Rad23 and Rpn10: perennial wallflowers join the melee. Trends Biochem Sci 29:637–640.

    Article  PubMed  CAS  Google Scholar 

  64. Kang Y, Vossler RA, Diaz-Martinez LA et al (2006) UBL/UBA ubiquitin receptor proteins bind a common tetraubiquitin chain. J Mol Biol 356:1027–1035.

    Article  PubMed  CAS  Google Scholar 

  65. Hartmann-Petersen R, Gordon C (2004) Integral UBL domain proteins: a family of proteasome interacting proteins. Semin Cell Dev Biol 15:247–259.

    Article  PubMed  CAS  Google Scholar 

  66. Lam YA, Lawson TG, Velayutham M et al (2002) A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 416:763–767.

    Article  PubMed  CAS  Google Scholar 

  67. Archer CT, Burdine L, Liu B et al (2008) Physical and functional interactions of monoubiquitylated transactivators with the proteasome. J Biol Chem 283:21789–21798.

    Article  PubMed  CAS  Google Scholar 

  68. Yao T, Cohen RE (2002) A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419:403–407.

    Article  PubMed  CAS  Google Scholar 

  69. Verma R, Aravind L, Oania R et al (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298:611–615.

    Article  PubMed  CAS  Google Scholar 

  70. Leggett DS, Hanna J, Borodovsky A et al (2002) Multiple associated proteins regulate proteasome structure and function. Mol Cell 10:495–507.

    Article  PubMed  CAS  Google Scholar 

  71. Hanna J, Meides A, Zhang DP, Finley D (2007) A ubiquitin stress response induces altered proteasome composition. Cell 129:747–759.

    Article  PubMed  CAS  Google Scholar 

  72. Verma R, Chen S, Feldman R et al (2000) Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol Biol Cell 11:3425–3439.

    PubMed  CAS  Google Scholar 

  73. Guerrero C, Milenkovic T, Przulj N et al (2008) Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis. Proc Natl Acad Sci USA 105:13333–13338.

    Article  PubMed  CAS  Google Scholar 

  74. Besche HC, Haas W, Gygi SP, Goldberg AL (2009) Isolation of mammalian 26S proteasomes and p97/VCP complexes using the ubiquitin-like domain from HHR23B reveals novel proteasome-associated proteins. Biochemistry 48:2538–2549.

    Article  PubMed  CAS  Google Scholar 

  75. Kleijnen MF, Roelofs J, Park S et al (2007) Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites. Nat Struct Mol Biol 14:1180–1188.

    Article  PubMed  CAS  Google Scholar 

  76. Gorbea C, Pratt G, Ustrell V et al (2010) A protein interaction network for Ecm29 links the 26S proteasome to molecular motors and endosomal components. J Biol Chem 285:31616–31633.

    Article  PubMed  CAS  Google Scholar 

  77. Gorbea C, Goellner GM, Teter K et al (2004) Characterization of mammalian Ecm29, a 26S proteasome-associated protein that localizes to the nucleus and membrane vesicles. J Biol Chem 279:54849–54861.

    Article  PubMed  CAS  Google Scholar 

  78. Lehmann A, Niewienda A, Jechow K et al (2010) Ecm29 fulfils quality control functions in proteasome assembly. Mol Cell 38:879–888.

    Article  PubMed  CAS  Google Scholar 

  79. Wang X, Yen J, Kaiser P, Huang L (2010) Regulation of the 26S proteasome complex during oxidative stress. Sci Signal 3:ra88.

    Google Scholar 

  80. Stadtmueller BM, Hill CP (2011) Proteasome activators. Mol Cell 41:8–19.

    Article  PubMed  CAS  Google Scholar 

  81. Rechsteiner M, Hill CP (2005) Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol 15:27–33.

    Article  PubMed  CAS  Google Scholar 

  82. Whitby FG, Masters EI, Kramer L et al (2000) Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408:115–120.

    Article  PubMed  CAS  Google Scholar 

  83. Fehlker M, Wendler P, Lehmann A, Enenkel C (2003) Blm3 is part of nascent proteasomes and is involved in a late stage of nuclear proteasome assembly. EMBO Rep 4:959–963.

    Article  PubMed  CAS  Google Scholar 

  84. Marques AJ, Glanemann C, Ramos PC, Dohmen RJ (2007) The C-terminal extension of the beta7 subunit and activator complexes stabilize nascent 20S proteasomes and promote their maturation. J Biol Chem 282:34869–34876.

    Article  PubMed  CAS  Google Scholar 

  85. Hendil KB, Khan S, Tanaka K (1998) Simultaneous binding of PA28 and PA700 activators to 20S proteasomes. Biochem J 332 (Pt 3):749–754.

    PubMed  Google Scholar 

  86. Tanahashi N, Murakami Y, Minami Y et al (2000) Hybrid proteasomes. Induction by interferon-gamma and contribution to ATP-dependent proteolysis. J Biol Chem 275:14336–14345.

    Article  PubMed  CAS  Google Scholar 

  87. Cascio P, Call M, Petre BM et al (2002) Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes. EMBO J 21:2636–2645.

    Article  PubMed  CAS  Google Scholar 

  88. Schmidt M, Haas W, Crosas B et al (2005) The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat Struct Mol Biol 12:294–303.

    Article  PubMed  CAS  Google Scholar 

  89. Shibatani T, Carlson EJ, Larabee F et al (2006) Global organization and function of mammalian cytosolic proteasome pools: Implications for PA28 and 19S regulatory complexes. Mol Biol Cell 17:4962–4971.

    Article  PubMed  CAS  Google Scholar 

  90. Le Tallec B, Barrault MB, Courbeyrette R et al (2007) 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals. Mol Cell 27:660–674.

    Article  PubMed  CAS  Google Scholar 

  91. Yashiroda H, Mizushima T, Okamoto K et al (2008) Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nat Struct Mol Biol 15:228–236.

    Article  PubMed  CAS  Google Scholar 

  92. Kusmierczyk AR, Hochstrasser M (2008) Some assembly required: dedicated chaperones in eukaryotic proteasome biogenesis. Biol Chem 389:1143–1151.

    Article  PubMed  CAS  Google Scholar 

  93. Ramos PC, Dohmen RJ (2008) PACemakers of proteasome core particle assembly. Structure 16:1296–1304.

    Article  PubMed  CAS  Google Scholar 

  94. Hirano Y, Hendil KB, Yashiroda H et al (2005) A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature 437:1381–1385.

    Article  PubMed  CAS  Google Scholar 

  95. Hirano Y, Kaneko T, Okamoto K et al (2008) Dissecting beta-ring assembly pathway of the mammalian 20S proteasome. EMBO J 27:2204–2213.

    Article  PubMed  CAS  Google Scholar 

  96. Li X, Kusmierczyk AR, Wong P et al (2007) beta-Subunit appendages promote 20S proteasome assembly by overcoming an Ump1-dependent checkpoint. EMBO J 26:2339–2349.

    Article  PubMed  CAS  Google Scholar 

  97. Ramos PC, Hockendorff J, Johnson ES et al (1998) Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell 92:489–499.

    Article  PubMed  CAS  Google Scholar 

  98. Burri L, Hockendorff J, Boehm U et al (2000) Identification and characterization of a mammalian protein interacting with 20S proteasome precursors. Proc Natl Acad Sci USA 97:10348–10353.

    Article  PubMed  CAS  Google Scholar 

  99. Griffin TA, Slack JP, McCluskey TS et al (2000) Identification of proteassemblin, a mammalian homologue of the yeast protein, Ump1p, that is required for normal proteasome assembly. Mol Cell Biol Res Commun 3:212–217.

    Article  PubMed  CAS  Google Scholar 

  100. Witt E, Zantopf D, Schmidt M et al (2000) Characterisation of the newly identified human Ump1 homologue POMP and analysis of LMP7(beta 5i) incorporation into 20S proteasomes. J Mol Biol 301:1–9.

    Article  PubMed  CAS  Google Scholar 

  101. Chen P, Hochstrasser M (1996) Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell 86:961–972.

    Article  PubMed  CAS  Google Scholar 

  102. Arendt CS, Hochstrasser M (1997) Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation. Proc Natl Acad Sci USA 94:7156–7161.

    Article  PubMed  CAS  Google Scholar 

  103. Ramos PC, Marques AJ, London MK, Dohmen RJ (2004) Role of C-terminal extensions of subunits beta2 and beta7 in assembly and activity of eukaryotic proteasomes. J Biol Chem 279:14323–14330.

    Article  PubMed  CAS  Google Scholar 

  104. Isono E, Nishihara K, Saeki Y et al (2007) The assembly pathway of the 19S regulatory particle of the yeast 26S proteasome. Mol Biol Cell 18:569–580.

    Article  PubMed  CAS  Google Scholar 

  105. Le Tallec B, Barrault MB, Guerois R et al (2009) Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome. Mol Cell 33:389–399.

    Article  PubMed  CAS  Google Scholar 

  106. Park S, Roelofs J, Kim W et al (2009) Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature 459:866–870.

    Article  PubMed  CAS  Google Scholar 

  107. Park S, Tian G, Roelofs J, Finley D (2010) Assembly manual for the proteasome regulatory particle: the first draft. Biochem Soc Trans 38:6–13.

    Article  PubMed  CAS  Google Scholar 

  108. Roelofs J, Park S, Haas W et al (2009) Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature 459:861–865.

    Article  PubMed  CAS  Google Scholar 

  109. Bedford L, Paine S, Sheppard PW et al (2010) Assembly, structure, and function of the 26S proteasome. Trends Cell Biol 20:391–401.

    Article  PubMed  CAS  Google Scholar 

  110. Gallastegui N, Groll M (2010) The 26S proteasome: assembly and function of a destructive machine. Trends Biochem Sci 35:634–642.

    Article  PubMed  CAS  Google Scholar 

  111. Thompson D, Hakala K, DeMartino GN (2009) Subcomplexes of PA700, the 19S ­regulator of the 26S proteasome, reveal relative roles of AAA subunits in 26S proteasome assembly and activation and ATPase activity. J Biol Chem 284:24891–24903.

    Article  PubMed  CAS  Google Scholar 

  112. Hendil KB, Kriegenburg F, Tanaka K et al (2009) The 20S proteasome as an assembly platform for the 19S regulatory complex. J Mol Biol 394:320–328.

    Article  PubMed  CAS  Google Scholar 

  113. Besche HC, Peth A, Goldberg AL (2009) Getting to first base in proteasome assembly. Cell 138:25–28.

    Article  PubMed  CAS  Google Scholar 

  114. DeMartino GN, Proske RJ, Moomaw CR et al (1996) Identification, purification, and characterization of a PA700-dependent activator of the proteasome. J Biol Chem 271:3112–3118.

    Article  PubMed  CAS  Google Scholar 

  115. Park Y, Hwang YP, Lee JS et al (2005) Proteasomal ATPase-associated factor 1 negatively regulates proteasome activity by interacting with proteasomal ATPases. Mol Cell Biol 25:3842–3853.

    Article  PubMed  CAS  Google Scholar 

  116. Dawson S, Higashitsuji H, Wilkinson AJ et al (2006) Gankyrin: a new oncoprotein and regulator of pRb and p53. Trends Cell Biol 16:229–233.

    Article  PubMed  CAS  Google Scholar 

  117. Kusmierczyk AR, Kunjappu MJ, Funakoshi M, Hochstrasser M (2008) A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nat Struct Mol Biol 15:237–244.

    Article  PubMed  CAS  Google Scholar 

  118. Sakata E, Stengel F, Fukunaga K et al (2011) The catalytic activity of Ubp6 enhances maturation of the proteasomal regulatory particle. Mol Cell: 42:637–649.

    Google Scholar 

  119. Elsasser S, Gali RR, Schwickart M et al (2002) Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat Cell Biol 4:725–730.

    Article  PubMed  CAS  Google Scholar 

  120. Isono E, Saito N, Kamata N et al (2005) Functional analysis of Rpn6p, a lid component of the 26S proteasome, using temperature-sensitive rpn6 mutants of the yeast Saccharomyces cerevisiae. J Biol Chem 280:6537–6547.

    Article  PubMed  CAS  Google Scholar 

  121. Isono E, Saeki Y, Yokosawa H, Toh-e A (2004) Rpn7 Is required for the structural integrity of the 26S proteasome of Saccharomyces cerevisiae. J Biol Chem 279:27168–27176.

    Article  PubMed  CAS  Google Scholar 

  122. Sharon M, Taverner T, Ambroggio XI et al (2006) Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biol 4:e267.

    Article  PubMed  CAS  Google Scholar 

  123. Fukunaga K, Kudo T, Toh-e A et al (2010) Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae. Biochem Biophys Res Commun 396:1048–1053.

    Article  PubMed  CAS  Google Scholar 

  124. Imai J, Maruya M, Yashiroda H et al (2003) The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. EMBO J 22:3557–3567.

    Article  PubMed  CAS  Google Scholar 

  125. Yen HC, Gordon C, Chang EC (2003) Schizosaccharomyces pombe Int6 and Ras homologs regulate cell division and mitotic fidelity via the proteasome. Cell 112:207–217.

    Article  PubMed  CAS  Google Scholar 

  126. Rencus-Lazar S, Amir Y, Wu J et al (2008) The proto-oncogene Int6 is essential for neddylation of Cul1 and Cul3 in Drosophila. PLoS One 3:e2239.

    Article  PubMed  CAS  Google Scholar 

  127. Yahalom A, Kim TH, Roy B et al (2008) Arabidopsis eIF3e is regulated by the COP9 signalosome and has an impact on development and protein translation. Plant J 53:300–311.

    Article  PubMed  CAS  Google Scholar 

  128. Tonoki A, Kuranaga E, Tomioka T et al (2009) Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process. Mol Cell Biol 29:1095–1106.

    Article  PubMed  CAS  Google Scholar 

  129. Mannhaupt G, Schnall R, Karpov V et al (1999) Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett 450:27–34.

    Article  PubMed  CAS  Google Scholar 

  130. Xie Y, Varshavsky A (2001) RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc Natl Acad Sci USA 98:3056–3061.

    Article  PubMed  CAS  Google Scholar 

  131. Radhakrishnan SK, Lee CS, Young P et al (2010) Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol Cell 38:17–28.

    Article  PubMed  CAS  Google Scholar 

  132. Steffen J, Seeger M, Koch A, Kruger E (2010) Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Mol Cell 40:147–158.

    Article  PubMed  CAS  Google Scholar 

  133. Xie Y (2010) Feedback regulation of proteasome gene expression and its implications in cancer therapy. Cancer Metastasis Rev 29:687–693.

    Article  PubMed  CAS  Google Scholar 

  134. Lee BH, Lee MJ, Park S et al (2010) Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467:179–184.

    Article  PubMed  CAS  Google Scholar 

  135. Collins GA, Tansey WP (2006) The proteasome: a utility tool for transcription? Curr Opin Genet Dev 16:197–202.

    Article  PubMed  CAS  Google Scholar 

  136. Lee D, Ezhkova E, Li B et al (2005) The ­proteasome regulatory particle alters the SAGA coactivator to enhance its interactions with transcriptional activators. Cell 123:423–436.

    Article  PubMed  CAS  Google Scholar 

  137. Russell SJ, Reed SH, Huang W et al (1999) The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol Cell 3:687–695.

    Article  PubMed  CAS  Google Scholar 

  138. Ferdous A, Kodadek T, Johnston SA (2002) A nonproteolytic function of the 19S regulatory subunit of the 26S proteasome is required for efficient activated transcription by human RNA polymerase II. Biochemistry 41:12798–12805.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank E. Sakata and W. Baumeister (Max Planck Institute of Biochemistry, Germany) for the cryo-EM image of the 26S proteasome. This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan; the Targeted Proteins Research Program; and Health and Labor Science Research Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Saeki, Y., Tanaka, K. (2012). Assembly and Function of the Proteasome. In: Dohmen, R., Scheffner, M. (eds) Ubiquitin Family Modifiers and the Proteasome. Methods in Molecular Biology, vol 832. Humana Press. https://doi.org/10.1007/978-1-61779-474-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-474-2_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-473-5

  • Online ISBN: 978-1-61779-474-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics