Skip to main content

Bioinformatical Detection of Recognition Factors for Ubiquitin and SUMO

  • Protocol
  • First Online:
Ubiquitin Family Modifiers and the Proteasome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 832))

Abstract

The specific recognition of ubiquitin, small ubiquitin-like modifier (SUMO), and related proteins is absolutely crucial for the signaling capacity of these modifiers. Most ubiquitin receptor proteins employ dedicated ubiquitin binding domains (UBDs), of which about 15 families have been described. By contrast, SUMO is recognized by short linear motifs that comprise only a few residues and do not require a defined tertiary structure. At the moment, three classes of SUMO-interacting motifs (SIMs) have been described. The recognition modes of most other modifiers remain poorly understood. When working with ubiquitin-family modifiers, a frequently occurring task is to assess a given protein sequence for the presence of known ubiquitin- or SUMO-binding elements. Due to the different nature of UBDs and SIMs, completely different approaches have to be used. This chapter addresses the bioinformatical detection of UBDs and SIMs through Web-based methods that are freely accessible and do not require a particular bioinformatics infrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersen KM, Hofmann K, Hartmann-Petersen R (2005) Ubiquitin-binding proteins: similar, but different. Essays Biochem 41:49–67.

    Article  PubMed  CAS  Google Scholar 

  2. Hurley JH, Lee S, Prag G (2006) Ubiquitin-binding domains. Biochem J 399:361–372.

    Article  PubMed  CAS  Google Scholar 

  3. Dikic I, Wakatsuki S, Walters KJ (2009) Ubiquitin-binding domains – from structures to functions. Nat Rev Mol Cell Biol 10:659–671.

    Article  PubMed  CAS  Google Scholar 

  4. Hofmann K (2009) Ubiquitin-binding domains and their role in the DNA damage response. DNA Repair (Amst) 8:544–556.

    Article  CAS  Google Scholar 

  5. Minty A, Dumont X, Kaghad M, Caput D (2000) Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J Biol Chem 275:36316–36323.

    Article  PubMed  CAS  Google Scholar 

  6. Song J, Durrin LK, Wilkinson TA et al (2004) Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci USA 101:14373–14378.

    Article  PubMed  CAS  Google Scholar 

  7. Hecker CM, Rabiller M, Haglund K et al (2006) Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 281:16117–16127.

    Article  PubMed  CAS  Google Scholar 

  8. Uzunova K, Gottsche K, Miteva M et al (2007) Ubiquitin-dependent proteolytic control of SUMO conjugates. J Biol Chem 282:34167–34175.

    Article  PubMed  CAS  Google Scholar 

  9. Miteva M, Keusekotten K, Hofmann K et al (2011) Sumoylation as a signal for polyubiquitylation and proteasomal degradation. Subcell Biochem 54:195–214.

    Article  Google Scholar 

  10. Trempe JF, Chen CX, Grenier K et al (2009) SH3 domains from a subset of BAR proteins define a Ubl-binding domain and implicate parkin in synaptic ubiquitination. Mol Cell 36:1034–1047.

    Article  PubMed  CAS  Google Scholar 

  11. Bucher P, Karplus K, Moeri N, Hofmann K (1996) A flexible motif search technique based on generalized profiles. Comput Chem 20:3–23.

    Article  PubMed  CAS  Google Scholar 

  12. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763.

    Article  PubMed  CAS  Google Scholar 

  13. Finn RD, Mistry J, Tate J et al (2011) The Pfam protein families database. Nucleic Acids Res 38:D211–222.

    Article  Google Scholar 

  14. Hunter S, Apweiler R, Attwood TK et al (2009) InterPro: the integrative protein signature database. Nucleic Acids Res 37:D211–215.

    Article  PubMed  CAS  Google Scholar 

  15. Letunic I, Doerks T, Bork P (2009) SMART 6: recent updates and new developments. Nucleic Acids Res 37:D229–232.

    Article  PubMed  CAS  Google Scholar 

  16. Sigrist CJ, Cerutti L, de Castro E et al (2011) PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res 38:D161–166.

    Article  Google Scholar 

  17. Wilson D, Pethica R, Zhou Y et al (2009) SUPERFAMILY – sophisticated comparative genomics, data mining, visualization and phylogeny. Nucleic Acids Res 37:D380–386.

    Article  PubMed  CAS  Google Scholar 

  18. Reverter D, Lima CD (2005) Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435:687–692.

    Article  PubMed  CAS  Google Scholar 

  19. Song J, Zhang Z, Hu W, Chen Y (2005) Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J Biol Chem 280:40122–40129.

    Article  PubMed  CAS  Google Scholar 

  20. Sekiyama N, Ikegami T, Yamane T et al (2008) Structure of the small ubiquitin-like modifier (SUMO)-interacting motif of MBD1-containing chromatin-associated factor 1 bound to SUMO-3. J Biol Chem 283:35966–35975.

    Article  PubMed  CAS  Google Scholar 

  21. Escobar-Cabrera E, Okon M, Lau DK et al (2011) Characterizing the N- and C-terminal SUMO interacting motifs of the scaffold protein DAXX. J Biol Chem.

    Google Scholar 

  22. Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402.

    Article  PubMed  CAS  Google Scholar 

  23. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113.

    Article  PubMed  Google Scholar 

  24. Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518.

    Article  PubMed  CAS  Google Scholar 

  25. Gould CM, Diella F, Via A et al (2011) ELM: the status of the 2010 eukaryotic linear motif resource. Nucleic Acids Res 38:D167–180.

    Article  Google Scholar 

  26. Linding R, Russell RB, Neduva V, Gibson TJ (2003) GlobPlot: Exploring protein sequences for globularity and disorder. Nucleic Acids Res 31:3701–3708.

    Article  PubMed  CAS  Google Scholar 

  27. Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21:3433–3434.

    Article  PubMed  CAS  Google Scholar 

  28. Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18:6097–6100.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the DFG priority program SPP1365.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay Hofmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Vogt, B., Hofmann, K. (2012). Bioinformatical Detection of Recognition Factors for Ubiquitin and SUMO. In: Dohmen, R., Scheffner, M. (eds) Ubiquitin Family Modifiers and the Proteasome. Methods in Molecular Biology, vol 832. Humana Press. https://doi.org/10.1007/978-1-61779-474-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-474-2_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-473-5

  • Online ISBN: 978-1-61779-474-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics