Skip to main content

Detection and Quantitation of SUMO Chains by Mass Spectrometry

  • Protocol
  • First Online:
Ubiquitin Family Modifiers and the Proteasome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 832))

Abstract

The small ubiquitin-like modifiers (SUMOs) alter the function of cellular proteins by covalent attachment to lysine side-chains. SUMOs can target themselves for modification so generating SUMO polymers, the functions of which are beginning to be unraveled.

The identification and quantitation of SUMO chains is essential for the functional investigation of SUMO polymerization. Classical techniques, such as site-directed mutagenesis and western blotting, are indirect and often inconclusive methods for the study of SUMO polymers. On the contrary, direct detection is possible with mass spectrometry (MS) by the identification of the SUMO–SUMO branched peptide remnant after proteolytic digestion. In this chapter, we describe a straightforward workflow that incorporates a modified database to efficiently detect SUMO polymers from simple and complex protein samples. In combination with stable isotope labeling by amino acids in cell culture (SILAC), this proteomic strategy allows accurate relative quantitation of SUMO polymers from different biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rodriguez MS, Dargemont C, Hay RT (2001) SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 276:12654–12659.

    Article  PubMed  CAS  Google Scholar 

  2. Pickart CM, Fushman D (2004) Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 8:610–616.

    Article  PubMed  CAS  Google Scholar 

  3. Tatham MH, Jaffray E, Vaughan OA et al (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 276:35368–35374.

    Article  PubMed  CAS  Google Scholar 

  4. Matic I, van Hagen M, Schimmel J et al (2008) In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol Cell Proteomics 7:132–144.

    PubMed  CAS  Google Scholar 

  5. Ulrich HD (2008) The fast-growing business of SUMO chains. Mol Cell 32:301–305.

    Article  PubMed  CAS  Google Scholar 

  6. Tatham MH, Geoffroy MC, Shen L et al (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10:538–546.

    Article  PubMed  CAS  Google Scholar 

  7. Hay RT (2005) SUMO: a history of modification. Mol Cell 18:1–12.

    Article  PubMed  CAS  Google Scholar 

  8. Tatham MH, Rodriguez MS, Xirodimas DP et al (2009) Detection of protein SUMOylation in vivo. Nat Protoc 4:1363–1371.

    Article  PubMed  CAS  Google Scholar 

  9. Golebiowski F, Tatham MH, Nakamura A et al High-stringency tandem affinity purification of proteins conjugated to ubiquitin-like moieties. Nat Protoc 5:873–882.

    Google Scholar 

  10. Andersen JS, Matic I, Vertegaal ACO (2009) Identification of SUMO target proteins by quantitative proteomics. Methods Mol Biol 497:19–31.

    Article  PubMed  CAS  Google Scholar 

  11. Golebiowski F, Matic I, Tatham MH et al (2009) System-wide changes to SUMO modifications in response to heat shock. Sci Signal 2:ra24.

    Google Scholar 

  12. Schimmel J, Larsen KM, Matic I et al (2008) The ubiquitin-proteasome system is a key component of the SUMO-2/3 cycle. Mol Cell Proteomics 7:2107–2122.

    Article  PubMed  CAS  Google Scholar 

  13. Pedrioli PG, Raught B, Zhang XD et al (2006) Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software. Nat Methods 3:533–539.

    Article  PubMed  CAS  Google Scholar 

  14. Blomster HA, Imanishi SY, Siimes J et al In vivo identification of sumoylation sites by a signature tag and cysteine-targeted affinity purification. J Biol Chem 285:19324–19329.

    Google Scholar 

  15. Matic I, Schimmel J, Hendriks IA et al Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif. Mol Cell 39:641–652.

    Google Scholar 

  16. Maiolica A, Cittaro D, Borsotti D et al (2007) Structural analysis of multiprotein complexes by cross-linking, mass spectrometry, and database searching. Mol Cell Proteomics 6:2200–2211.

    Article  PubMed  CAS  Google Scholar 

  17. Hsiao HH, Meulmeester E, Frank BT et al (2009) “ChopNSpice,“a mass spectrometric approach that allows identification of endogenous small ubiquitin-like modifier-conjugated peptides. Mol Cell Proteomics 8:2664–2675.

    Article  PubMed  CAS  Google Scholar 

  18. Castillo-Lluva S, Tatham MH, Jones RC et al SUMOylation of the GTPase Rac1 is required for optimal cell migration. Nat Cell Biol 12:1078–1085.

    Google Scholar 

  19. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372.

    Article  PubMed  CAS  Google Scholar 

  20. Cox J, Matic I, Hilger M et al (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4:698–705.

    Article  PubMed  CAS  Google Scholar 

  21. Kersey PJ, Duarte J, Williams A et al (2004) The International Protein Index: an integrated database for proteomics experiments. Proteomics 4:1985–1988.

    Article  PubMed  CAS  Google Scholar 

  22. (2008) The universal protein resource (UniProt). Nucleic Acids Res 36:D190-195.

    Google Scholar 

  23. Flicek P, Aken BL, Beal K et al (2008) Ensembl 2008. Nucleic Acids Res 36:D707–714.

    Article  PubMed  CAS  Google Scholar 

  24. Schandorff S, Olsen JV, Bunkenborg J et al (2007) A mass spectrometry-friendly database for cSNP identification. Nat Methods 4:465–466.

    Article  PubMed  CAS  Google Scholar 

  25. Ong SE, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1:2650–2660.

    Article  PubMed  CAS  Google Scholar 

  26. Cooper HJ, Tatham MH, Jaffray E et al (2005) Fourier transform ion cyclotron resonance mass spectrometry for the analysis of small ubiquitin-like modifier (SUMO) modification: identification of lysines in RanBP2 and SUMO targeted for modification during the E3 autoSUMOylation reaction. Anal Chem 77:6310–6319.

    Article  PubMed  CAS  Google Scholar 

  27. Waanders LF, Almeida R, Prosser S et al (2008) A novel chromatographic method allows on-line reanalysis of the proteome. Mol Cell Proteomics 7:1452–1459.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Michael H. Tatham for comments on the manuscript. IM is a Sir Henry Wellcome Postdoctoral Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Matic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Matic, I., Hay, R.T. (2012). Detection and Quantitation of SUMO Chains by Mass Spectrometry. In: Dohmen, R., Scheffner, M. (eds) Ubiquitin Family Modifiers and the Proteasome. Methods in Molecular Biology, vol 832. Humana Press. https://doi.org/10.1007/978-1-61779-474-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-474-2_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-473-5

  • Online ISBN: 978-1-61779-474-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics