Skip to main content

Computing the Thermodynamic Contributions of Interfacial Water

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 819))

Abstract

Water molecules at the binding interface of biomolecular complexes or water molecules displaced from hydrophobic cavities have lately been recognized as important modulators of binding affinity. One approach to computing the contribution of these water molecules to solvation thermodynamics is inhomogeneous fluid solvation theory (IFST). Over the past few years this approach has been applied to interfacial water molecules, both individual and in clusters. Our implementation of IFST resulted in the computational package Solvation Thermodynamics of Ordered Water (STOW). This chapter gives an overview of the theory and its applications and describes how to calculate the thermodynamic contributions of ordered water molecules using STOW.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li Z and Lazaridis T (2007) Water at biomolecular binding interfaces. Phys. Chem. Chem. Phys. 9: 573–581.

    Article  PubMed  CAS  Google Scholar 

  2. Lazaridis T (1998) Inhomogeneous fluid approach to solvation thermodynamics 1. Theory. J. Phys. Chem. B 102: 3531–41.

    Article  CAS  Google Scholar 

  3. Lazaridis T (1998) Inhomogeneous fluid approach to solvation thermodynamics. 2. Application to simple fluids. J. Phys. Chem. B 102: 3542–3550.

    CAS  Google Scholar 

  4. Li Z and Lazaridis T (2003) Thermodynamic Contributions of the ordered water molecule in HIV-1 protease. J. Am. Chem. Soc. 125: 6636–6637.

    Article  PubMed  CAS  Google Scholar 

  5. Li Z and Lazaridis T (2005) The effect of water displacement on binding thermodynamics: Concanavalin A. J. Phys. Chem. B 109: 662–670.

    Article  PubMed  CAS  Google Scholar 

  6. Li Z and Lazaridis T (2006) Thermodynamics of buried water clusters at a protein-ligand binding interface. J. Phys. Chem. B 110: 1464–1475.

    Article  PubMed  CAS  Google Scholar 

  7. Young T, Abel R, Kim B, Berne BJ, and Friesner RA (2007) Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand binding. Proc. Natl. Acad. Sci. USA 104(3): 808–813.

    Article  PubMed  CAS  Google Scholar 

  8. Beuming T, Farid R, and Sherman W (2009) High-energy water sites determine peptide binding affinity and specificity of PDZ domains. Prot. Sci. 18(8): 1609–1619.

    Article  CAS  Google Scholar 

  9. Chrencik JE, Patny A, Leung IK, Korniski B, Emmons TL, Hall T, Weinberg RA, Gormley JA, Williams JM, Day JE, Hirsch JL, Kiefer JR, Leone JW, HD. F, Sommers CD, Huang HC, Jacobsen EJ, Tenbrink RE, Tomasselli AG, and Benson TE (2010) Structural and thermodynamic characterization of the TYK2 and JAK3 kinase domains in complex with CP-690550 and CMP-6. J. Mol. Biol. 400(3): 413–433.

    Google Scholar 

  10. Higgs C, Beuming T, and Sherman W (2010) Hydration site thermodynamics explain SARs for triazolylpurines analogues binding to the A2A receptor. ACS Medicinal Chemistry Letters 1(4): 160–164.

    Article  CAS  Google Scholar 

  11. Lazaridis T (2000) Solvent reorganization energy and entropy in hydrophobic hydration. J. Phys. Chem. B 104: 4964–79.

    Article  CAS  Google Scholar 

  12. Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, and Karplus M (2009) CHARMM: the biomolecular simulation program. J. Comp. Chem. 30(10): 1545–1614.

    Article  CAS  Google Scholar 

  13. Brooks CL and Karplus M (1983) Deformable stochastic boundaries in molecular-dynamics. J. Chem. Phys. 79: 6312–6325.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (MCB-0615552). Infrastructure support was provided in part by RCMI grant RR03060 from NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Themis Lazaridis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Li, Z., Lazaridis, T. (2012). Computing the Thermodynamic Contributions of Interfacial Water. In: Baron, R. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 819. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-465-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-465-0_24

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-464-3

  • Online ISBN: 978-1-61779-465-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics