Skip to main content

Experimental Psychiatric Illness and Drug Abuse Models: From Human to Animal, an Overview

  • Protocol
  • First Online:
Psychiatric Disorders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 829))

Abstract

Preclinical animal models have supported much of the recent rapid expansion of neuroscience research and have facilitated critical discoveries that undoubtedly benefit patients suffering from psychiatric disorders. This overview serves as an introduction for the following chapters describing both in vivo and in vitro preclinical models of psychiatric disease components and briefly describes models related to drug dependence and affective disorders. Although there are no perfect animal models of any psychiatric disorder, models do exist for many elements of each disease state or stage. In many cases, the development of certain models is essentially restricted to the human clinical laboratory domain for the purpose of maximizing validity, whereas the use of in vitro models may best represent an adjunctive, well-controlled means to model specific signaling mechanisms associated with psychiatric disease states. The data generated by preclinical models are only as valid as the model itself, and the development and refinement of animal models for human psychiatric disorders continues to be an important challenge. Collaborative relationships between basic neuroscience and clinical modeling could greatly benefit the development of new and better models, in addition to facilitating medications development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edwards, S., and Koob, G. F. (2010) Neurobiology of dysregulated motivational systems in drug addiction, Future Neurol 5, 393–401.

    Article  PubMed  CAS  Google Scholar 

  2. Covington, H. E., 3rd, Vialou, V., and Nestler, E. J. (2010) From synapse to nucleus: novel targets for treating depression, Neuropharmacology 58, 683–693.

    Article  PubMed  CAS  Google Scholar 

  3. McKinney, W. (1989) Basis of development of animal models in psychiatry: an overview. in Animal models of depression (Koob, G. F., Ehlers CL, Kupfer DJ, Ed.), pp 3–17, Birkhauser, Boston, Basel.

    Google Scholar 

  4. Adriani, W., Granstrem, O., Macri, S., Izykenova, G., Dambinova, S., and Laviola, G. (2004) Behavioral and neurochemical vulnerability during adolescence in mice: studies with nicotine, Neuropsychopharmacology 29, 869–878.

    Article  PubMed  CAS  Google Scholar 

  5. Brown, S. A., and Tapert, S. F. (2004) Adolescence and the trajectory of alcohol use: basic to clinical studies, Ann N Y Acad Sci 1021, 234–244.

    Article  PubMed  Google Scholar 

  6. O’Dell, L. E. (2009) A psychobiological framework of the substrates that mediate nicotine use during adolescence, Neuropharmacology 56 Suppl 1, 263–278.

    Article  PubMed  Google Scholar 

  7. Schramm-Sapyta, N. L., Walker, Q. D., Caster, J. M., Levin, E. D., and Kuhn, C. M. (2009) Are adolescents more vulnerable to drug addiction than adults? Evidence from animal models, Psychopharmacology (Berl) 206, 1–21.

    Article  CAS  Google Scholar 

  8. Palanza, P. (2001) Animal models of anxiety and depression: how are females different?, Neurosci Biobehav Rev 25, 219–233.

    Article  PubMed  CAS  Google Scholar 

  9. Fattore, L., Altea, S., and Fratta, W. (2008) Sex differences in drug addiction: a review of animal and human studies, Womens Health (Lond Engl) 4, 51–65.

    Article  CAS  Google Scholar 

  10. McClung, C. A. (2007) Circadian genes, rhythms and the biology of mood disorders, Pharmacol Ther 114, 222–232.

    Article  PubMed  CAS  Google Scholar 

  11. Falcon, E., and McClung, C. A. (2009) A role for the circadian genes in drug addiction, Neuropharmacology 56 Suppl 1, 91–96.

    Article  PubMed  CAS  Google Scholar 

  12. Ebel, R. (1961) Must all tests be valid?, American Psychologist 16, 640–647.

    Article  Google Scholar 

  13. Sayette, M. A., Shiffman, S., Tiffany, S. T., Niaura, R. S., Martin, C. S., and Shadel, W. G. (2000) The measurement of drug craving, Addiction 95 Suppl 2, S189–210.

    PubMed  Google Scholar 

  14. Cronbach, L. J., and Meehl, P. E. (1955) Construct validity in psychological tests, Psychol Bull 52, 281–302.

    Article  PubMed  CAS  Google Scholar 

  15. Katz, J. L., and Higgins, S. T. (2003) The validity of the reinstatement model of craving and relapse to drug use, Psychopharmacology (Berl) 168, 21–30.

    Article  CAS  Google Scholar 

  16. McKinney, W. (1988) Models of Mental Disorders: A New Comparative Psychiatry, Plenum, New York.

    Google Scholar 

  17. MA Geyer, A. M. (1995) Animal models of psychiatric disorders, in Psychopharmacology: The Fourth Generation of Progress (FE Bloom, D. K., Ed.), pp 787–798 Raven Press, New York.

    Google Scholar 

  18. Willner, P. (1984) The validity of animal models of depression, Psychopharmacology (Berl) 83, 1–16.

    Article  CAS  Google Scholar 

  19. Matthysse, S. (1986) Animal models in psychiatric research, Prog Brain Res 65, 259–270.

    Article  PubMed  CAS  Google Scholar 

  20. Ellenbroek, B. A., and Cools, A. R. (2000) Animal models for the negative symptoms of schizophrenia, Behav Pharmacol 11, 223–233.

    Article  PubMed  CAS  Google Scholar 

  21. Markou, A., and Koob, G. F. (1992) Construct validity of a self-stimulation threshold paradigm: effects of reward and performance manipulations, Physiol Behav 51, 111–119.

    Article  PubMed  CAS  Google Scholar 

  22. Gilpin, N. W., and Koob, G. F. (2008) Neurobiology of Alcohol Dependence: Focus on Motivational Mechanisms, Alcohol Res Health 31, 185–195.

    PubMed  Google Scholar 

  23. Association, A. P. (1994) Diagnostic and Statistical Manual of Mental Disorders, 4 ed.

    Google Scholar 

  24. Koob, G. F., and Le Moal, M. (2001) Drug addiction, dysregulation of reward, and allostasis, Neuropsychopharmacology 24, 97–129.

    Article  PubMed  CAS  Google Scholar 

  25. Bindra (1976) A Theory of Intelligent Behavior, Wiley, New York.

    Google Scholar 

  26. Koob, G. F. (2008) A role for brain stress systems in addiction, Neuron 59, 11–34.

    Article  PubMed  CAS  Google Scholar 

  27. Shippenberg TS, G. K. (2002) Recent advances in animal models of drug addiction and alcoholism, in Neuropsychopharmacology: The Fifth Generation of Progress (KL Davis, D. C., JT Coyle, C Nemeroff, Ed.), pp 1381–1397, Lippincott Williams and Wilkins, Philadelphia.

    Google Scholar 

  28. Carlezon, W. A., Jr., and Chartoff, E. H. (2007) Intracranial self-stimulation (ICSS) in rodents to study the neurobiology of motivation, Nat Protoc 2, 2987–2995.

    Article  PubMed  CAS  Google Scholar 

  29. Ahmed, S. H., and Koob, G. F. (1998) Transition from moderate to excessive drug intake: change in hedonic set point, Science 282, 298–300.

    Article  PubMed  CAS  Google Scholar 

  30. Ahmed, S. H., Walker, J. R., and Koob, G. F. (2000) Persistent increase in the motivation to take heroin in rats with a history of drug escalation, Neuropsychopharmacology 22, 413–421.

    Article  PubMed  CAS  Google Scholar 

  31. Roberts, A. J., Heyser, C. J., Cole, M., Griffin, P., and Koob, G. F. (2000) Excessive ethanol drinking following a history of dependence: animal model of allostasis, Neuropsychopharmacology 22, 581–594.

    Article  PubMed  CAS  Google Scholar 

  32. Breese, G. R., Chu, K., Dayas, C. V., Funk, D., Knapp, D. J., Koob, G. F., Le, D. A., O’Dell, L. E., Overstreet, D. H., Roberts, A. J., Sinha, R., Valdez, G. R., and Weiss, F. (2005) Stress enhancement of craving during sobriety: a risk for relapse, Alcohol Clin Exp Res 29, 185–195.

    Article  PubMed  Google Scholar 

  33. Kitamura, O., Wee, S., Specio, S. E., Koob, G. F., and Pulvirenti, L. (2006) Escalation of methamphetamine self-administration in rats: a dose-effect function, Psychopharmacology (Berl) 186, 48–53.

    Article  CAS  Google Scholar 

  34. O’Dell, L. E., Chen, S. A., Smith, R. T., Specio, S. E., Balster, R. L., Paterson, N. E., Markou, A., Zorrilla, E. P., and Koob, G. F. (2007) Extended access to nicotine self-administration leads to dependence: Circadian measures, withdrawal measures, and extinction behavior in rats, J Pharmacol Exp Ther 320, 180–193.

    Article  PubMed  Google Scholar 

  35. Edwards, S., Graham, D. L., Bachtell, R. K., and Self, D. W. (2007) Region-specific tolerance to cocaine-regulated cAMP-dependent protein phosphorylation following chronic self-administration, Eur J Neurosci 25, 2201–2213.

    Article  PubMed  Google Scholar 

  36. Self, D. W. (1998) Neural substrates of drug craving and relapse in drug addiction, Ann Med 30, 379–389.

    Article  PubMed  CAS  Google Scholar 

  37. Shaham, Y., Shalev, U., Lu, L., De Wit, H., and Stewart, J. (2003) The reinstatement model of drug relapse: history, methodology and major findings, Psychopharmacology (Berl) 168, 3–20.

    Article  CAS  Google Scholar 

  38. Miczek, K. A., Yap, J. J., and Covington, H. E., 3rd. (2008) Social stress, therapeutics and drug abuse: preclinical models of escalated and depressed intake, Pharmacol Ther 120, 102–128.

    Article  PubMed  CAS  Google Scholar 

  39. Callahan, L. B., Tschetter, K. E., and Ronan, P. J. (2007) Difficulties associated with the cocaine conditioned place preference (CPP) test using rats, in Society for Neuroscience Abstracts, San Diego.

    Google Scholar 

  40. Markou, A., Weiss, F., Gold, L. H., Caine, S. B., Schulteis, G., and Koob, G. F. (1993) Animal models of drug craving, Psychopharmacology (Berl) 112, 163–182.

    Article  CAS  Google Scholar 

  41. Tiffany, S. T., Carter, B. L., and Singleton, E. G. (2000) Challenges in the manipulation, assessment and interpretation of craving relevant variables, Addiction 95 Suppl 2, S177–187.

    PubMed  Google Scholar 

  42. JF Cryan, C. S., TG Dinan, F Borsini. (2008) Developing more efficacious antidepressant medication: improving and aligning preclinical and clinical assessment tools. in Animal and Translational Models for CNS Drug Discovery (RA McArthur, F Borsini, Ed.), Elsevier, Amsterdam.

    Google Scholar 

  43. Levinson, D. F. (2006) The genetics of depression: a review, Biol Psychiatry 60, 84–92.

    Article  PubMed  CAS  Google Scholar 

  44. Krishnan, V., and Nestler, E. J. (2008) The molecular neurobiology of depression, Nature 455, 894–902.

    Article  PubMed  CAS  Google Scholar 

  45. Wurtman, R. J. (2005) Genes, stress, and depression, Metabolism 54, 16–19.

    Article  PubMed  CAS  Google Scholar 

  46. Moller, H. J. (2003) Suicide, suicidality and suicide prevention in affective disorders, Acta Psychiatr Scand Suppl, 73–80.

    Google Scholar 

  47. Moreau, J. L. (1997) Reliable monitoring of hedonic deficits in the chronic mild stress model of depression, Psychopharmacology (Berl) 134, 357–358; discussion 371–357.

    Google Scholar 

  48. Willner, P., Towell, A., Sampson, D., Sophokleous, S., and Muscat, R. (1987) Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant, Psychopharmacology (Berl) 93, 358–364.

    Article  CAS  Google Scholar 

  49. Yu, J., Liu, Q., Wang, Y. Q., Wang, J., Li, X. Y., Cao, X. D., and Wu, G. C. (2007) Electroacupuncture combined with clomipramine enhances antidepressant effect in rodents, Neurosci Lett 421, 5–9.

    Article  PubMed  CAS  Google Scholar 

  50. Reid, I., Forbes, N., Stewart, C., and Matthews, K. (1997) Chronic mild stress and depressive disorder: a useful new model?, Psychopharmacology (Berl) 134, 365–367; discussion 371–367.

    Google Scholar 

  51. Muscat, R., Kyprianou, T., Osman, M., Phillips, G., and Willner, P. (1991) Sweetness-dependent facilitation of sucrose drinking by raclopride is unrelated to calorie content, Pharmacol Biochem Behav 40, 209–213.

    Article  PubMed  CAS  Google Scholar 

  52. Willner, P., Muscat, R., and Papp, M. (1992) Chronic mild stress-induced anhedonia: a realistic animal model of depression, Neurosci Biobehav Rev 16, 525–534.

    Article  PubMed  CAS  Google Scholar 

  53. Muscat, R., and Willner, P. (1992) Suppression of sucrose drinking by chronic mild unpredictable stress: a methodological analysis, Neurosci Biobehav Rev 16, 507–517.

    Article  PubMed  CAS  Google Scholar 

  54. Katz, R. J. (1982) Animal model of depression: pharmacological sensitivity of a hedonic deficit, Pharmacol Biochem Behav 16, 965–968.

    Article  PubMed  CAS  Google Scholar 

  55. Von Frijtag, J. C., Van den Bos, R., and Spruijt, B. M. (2002) Imipramine restores the long-term impairment of appetitive behavior in socially stressed rats, Psychopharmacology (Berl) 162, 232–238.

    Article  Google Scholar 

  56. Duncko, R., Schwendt, M., and Jezova, D. (2003) Altered glutamate receptor and corticoliberin gene expression in brain regions related to hedonic behavior in rats, Pharmacol Biochem Behav 76, 9–16.

    Article  PubMed  CAS  Google Scholar 

  57. Cheeta, S., Broekkamp, C., and Willner, P. (1994) Stereospecific reversal of stress-induced anhedonia by mianserin and its (+)-enantiomer, Psychopharmacology (Berl) 116, 523–528.

    Article  CAS  Google Scholar 

  58. Rygula, R., Abumaria, N., Domenici, E., Hiemke, C., and Fuchs, E. (2006) Effects of fluoxetine on behavioral deficits evoked by chronic social stress in rats, Behav Brain Res 174, 188–192.

    Article  PubMed  CAS  Google Scholar 

  59. Rygula, R., Abumaria, N., Flugge, G., Hiemke, C., Fuchs, E., Ruther, E., and Havemann-Reinecke, U. (2006) Citalopram counteracts depressive-like symptoms evoked by chronic social stress in rats, Behav Pharmacol 17, 19–29.

    Article  PubMed  CAS  Google Scholar 

  60. Casarotto, P. C., and Andreatini, R. (2007) Repeated paroxetine treatment reverses anhedonia induced in rats by chronic mild stress or dexamethasone, Eur Neuropsychopharmacol 17, 735–742.

    Article  PubMed  CAS  Google Scholar 

  61. Markou, A., and Koob, G. F. (1991) Postcocaine anhedonia. An animal model of cocaine withdrawal, Neuropsychopharmacology 4, 17–26.

    CAS  Google Scholar 

  62. I Geller, J. S. (1960) The effect of meprobamate, barbiturates, d-amphetamine and promazine on experimentally-induced conflict in the rat, Psychopharmacologia 1, 482–491.

    Google Scholar 

  63. File, S. E., and Hyde, J. R. (1978) Can social interaction be used to measure anxiety?, Br J Pharmacol 62, 19–24.

    PubMed  CAS  Google Scholar 

  64. Archer, J. (1973) Tests for emotionality in rats and mice: a review, Anim Behav 21, 205–235.

    Article  PubMed  CAS  Google Scholar 

  65. Dawson, G. R., and Tricklebank, M. D. (1995) Use of the elevated plus maze in the search for novel anxiolytic agents, Trends Pharmacol Sci 16, 33–36.

    Article  PubMed  CAS  Google Scholar 

  66. Handley, S. L., and Mithani, S. (1984) Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of ‘fear’-motivated behaviour, Naunyn Schmiedebergs Arch Pharmacol 327, 1–5.

    Article  PubMed  CAS  Google Scholar 

  67. Pellow, S., Chopin, P., File, S. E., and Briley, M. (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat, J Neurosci Methods 14, 149–167.

    Article  PubMed  CAS  Google Scholar 

  68. Pellow, S., and File, S. E. (1986) Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat, Pharmacol Biochem Behav 24, 525–529.

    Article  PubMed  CAS  Google Scholar 

  69. Handley, S. L., and McBlane, J. W. (1993) An assessment of the elevated X-maze for studying anxiety and anxiety-modulating drugs, J Pharmacol Toxicol Methods 29, 129–138.

    Article  PubMed  CAS  Google Scholar 

  70. M Reibaud, A. B. (1993) Evolution of putative anxiolytics in the elevated plus-maze, in Paradigms for the Study of Behavior (Conn, M., Ed.), pp 230–239, Academic Press, San Diego.

    Google Scholar 

  71. Gorman, A. L., and Dunn, A. J. (1993) Beta-adrenergic receptors are involved in stress-related behavioral changes, Pharmacol Biochem Behav 45, 1–7.

    Article  PubMed  CAS  Google Scholar 

  72. JS Andrews, C. B. (1993) Procedures to identify anxiolytic or anxiogenic agents, in Behavioral Neuroscience: A Practical Approach (Sahgal, A., Ed.), pp 37–54, IRL Press, Oxford.

    Google Scholar 

  73. Korte, S. M., Korte-Bouws, G. A., Bohus, B., and Koob, G. F. (1994) Effect of corticotropin-releasing factor antagonist on behavioral and neuroendocrine responses during exposure to defensive burying paradigm in rats, Physiol Behav 56, 115–120.

    Article  PubMed  CAS  Google Scholar 

  74. Bowers, R. L., Herzog, C. D., Stone, E. H., and Dionne, T. J. (1992) Defensive burying following injections of cholecystokinin, bombesin, and LiCl in rats, Physiol Behav 51, 969–972.

    Article  PubMed  CAS  Google Scholar 

  75. Korte, S. M., and Bohus, B. (1990) The effect of ipsapirone on behavioural and cardiac responses in the shock-probe/defensive burying test in male rats, Eur J Pharmacol 181, 307–310.

    Article  PubMed  CAS  Google Scholar 

  76. CL Broekkamp, F. J. (1989) The relationship between various animal models of anxiety, fear-related psychiatric symptoms and response to serotonergic drugs, in Behavioral Pharmacology of 5-HT (P Bevan, R. C., T Archer, Ed.), pp 321–325, Erlbaum, Hillsdale.

    Google Scholar 

  77. Feder, A., Nestler, E. J., and Charney, D. S. (2009) Psychobiology and molecular genetics of resilience, Nat Rev Neurosci 10, 446–457.

    Article  PubMed  CAS  Google Scholar 

  78. Harro, J. (2010) Inter-individual differences in neurobiology as vulnerability factors for affective disorders: implications for psychopharmacology, Pharmacol Ther 125, 402–422.

    Article  PubMed  CAS  Google Scholar 

  79. Litt, M. D., and Cooney, N. L. (1999) Inducing craving for alcohol in the laboratory, Alcohol Res Health 23, 174–178.

    PubMed  CAS  Google Scholar 

  80. Mason, B. J., Light, J. M., Williams, L. D., and Drobes, D. J. (2009) Proof-of-concept human laboratory study for protracted abstinence in alcohol dependence: effects of gabapentin, Addict Biol 14, 73–83.

    Article  PubMed  CAS  Google Scholar 

  81. Epstein, D. H., and Preston, K. L. (2003) The reinstatement model and relapse prevention: a clinical perspective, Psychopharmacology (Berl) 168, 31–41.

    Article  CAS  Google Scholar 

  82. Koob, G. F., Kenneth Lloyd, G., and Mason, B. J. (2009) Development of pharmacotherapies for drug addiction: a Rosetta stone approach, Nat Rev Drug Discov 8, 500–515.

    Article  PubMed  CAS  Google Scholar 

  83. GA Marlatt, J. G. (1985) Relapse Prevention, Guilford Press, New York.

    Google Scholar 

  84. Mason, B. J., Light, J. M., Escher, T., and Drobes, D. J. (2008) Effect of positive and negative affective stimuli and beverage cues on measures of craving in non treatment-seeking alcoholics, Psychopharmacology (Berl) 200, 141–150.

    Article  CAS  Google Scholar 

  85. Nestler, E. J., Barrot, M., and Self, D. W. (2001) DeltaFosB: a sustained molecular switch for addiction, Proc Natl Acad Sci USA 98, 11042–11046.

    Article  PubMed  CAS  Google Scholar 

  86. Ulery, P. G., Rudenko, G., and Nestler, E. J. (2006) Regulation of DeltaFosB stability by phosphorylation, J Neurosci 26, 5131–5142.

    Article  PubMed  CAS  Google Scholar 

  87. Carle, T. L., Ohnishi, Y. N., Ohnishi, Y. H., Alibhai, I. N., Wilkinson, M. B., Kumar, A., and Nestler, E. J. (2007) Proteasome-dependent and -independent mechanisms for FosB destabilization: identification of FosB degron domains and implications for DeltaFosB stability, Eur J Neurosci 25, 3009–3019.

    Article  PubMed  Google Scholar 

  88. Alibhai, I. N., Green, T. A., Potashkin, J. A., and Nestler, E. J. (2007) Regulation of fosB and DeltafosB mRNA expression: in vivo and in vitro studies, Brain Res 1143, 22–33.

    Article  PubMed  CAS  Google Scholar 

  89. Ulery-Reynolds, P. G., Castillo, M. A., Vialou, V., Russo, S. J., and Nestler, E. J. (2009) Phosphorylation of DeltaFosB mediates its stability in vivo, Neuroscience 158, 369–372.

    Article  PubMed  CAS  Google Scholar 

  90. Harris, R. A., Trudell, J. R., and Mihic, S. J. (2008) Ethanol’s molecular targets, Sci Signal 1, re7.

    Google Scholar 

  91. Martini, L., and Whistler, J. L. (2007) The role of mu opioid receptor desensitization and endocytosis in morphine tolerance and dependence, Curr Opin Neurobiol 17, 556–564.

    Article  PubMed  CAS  Google Scholar 

  92. Berger, A. C., and Whistler, J. L. (2010) How to design an opioid drug that causes reduced tolerance and dependence, Ann Neurol 67, 559–569.

    Article  PubMed  CAS  Google Scholar 

  93. Littleton, J. (2007) Acamprosate in Alcohol Dependence: Implications of a Unique Mechanism of Action, Journal of Addiction Medicine 1, 115–125.

    Article  PubMed  CAS  Google Scholar 

  94. Hollenbeck, P. J., and Bamburg, J. R. (2003) Comparing the properties of neuronal culture systems: a shopping guide for the cell biologist, Methods Cell Biol 71, 1–16.

    Article  PubMed  Google Scholar 

  95. Matteoli, M., Verderio, C., Krawzeski, K., Mundigl, O., Coco, S., Fumagalli, G., and De Camilli, P. (1995) Mechanisms of synaptogenesis in hippocampal neurons in primary culture, J Physiol Paris 89, 51–55.

    Article  PubMed  CAS  Google Scholar 

  96. Gao, C., and Wolf, M. E. (2007) Dopamine alters AMPA receptor synaptic expression and subunit composition in dopamine neurons of the ventral tegmental area cultured with prefrontal cortex neurons, J Neurosci 27, 14275–14285.

    Article  PubMed  CAS  Google Scholar 

  97. Fitzgerald, L. W., Ortiz, J., Hamedani, A. G., and Nestler, E. J. (1996) Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents, J Neurosci 16, 274–282.

    PubMed  CAS  Google Scholar 

  98. Wolf, M. E. (1998) The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants, Prog Neurobiol 54, 679–720.

    Article  PubMed  CAS  Google Scholar 

  99. Saal, D., Dong, Y., Bonci, A., and Malenka, R. C. (2003) Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons, Neuron 37, 577–582.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Michael Arends for editorial assistance. This is publication number 20895 from The Scripps Research Institute. Preparation of this chapter was funded by the Pearson Center for Alcoholism and Addiction Research and National Institutes of Health grants AA018250, AA06420, AA12602, and AA08459 from the National Institute on Alcohol Abuse and Alcoholism, DA04043, DA04398, and DA023597 from the National Institute on Drug Abuse, and DK26742 from the National Institute of Diabetes and Digestive and Kidney Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George F. Koob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Edwards, S., Koob, G.F. (2012). Experimental Psychiatric Illness and Drug Abuse Models: From Human to Animal, an Overview. In: Kobeissy, F. (eds) Psychiatric Disorders. Methods in Molecular Biology, vol 829. Humana Press. https://doi.org/10.1007/978-1-61779-458-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-458-2_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-457-5

  • Online ISBN: 978-1-61779-458-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics