Skip to main content

An In Vitro Model of Ischemic Stroke

  • Protocol
  • First Online:
Astrocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 814))

Abstract

Brain stroke is a devastating cerebrovascular disease and ranks as the third most common cause of death and disability in the US. Altered blood–brain barrier (BBB) signaling and permeability characteristics during stroke can increase the risk for life-threatening hemorrhagic transformation or damaging brain edema. The BBB plays a crucial role in maintaining the permeability and CNS homeostasis under physiological/pathological conditions by protecting the brain from the fluctuations in plasma constituents. Many in vitro brain endothelial cell culture models have been developed and studied over the past several decades to understand the pathophysiological mechanisms and role of the BBB in stroke. Restrictive barrier properties of brain endothelial cells have been shown to be predominantly influenced by astrocytes and astrocyte-secreting factors using coculture systems. By using astrocyte-endothelial cocultures, it is possible to model in vivo BBB characteristics, while allowing for mechanistic studies to be performed. Hence, the application of in vitro astrocyte-endothelial coculture BBB systems is a powerful technique to understand and investigate the pathophysiological mechanisms in stroke. This approach can be utilized to uncover cell signaling pathways and that may identify new neurovascular drug targets to treat this devastating brain vascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brightman, M. W., and Reese, T. S. (1969) Junctions between intimately apposed cell membranes in the vertebrate brain, J Cell Biol 40, 648–677.

    Article  PubMed  CAS  Google Scholar 

  2. Abbott, N. J., and Romero, I. A. (1996) Transporting therapeutics across the blood-brain barrier, Mol Med Today 2, 106–113.

    Article  PubMed  CAS  Google Scholar 

  3. Kniesel, U., and Wolburg, H. (2000) Tight junctions of the blood-brain barrier, Cell Mol Neurobiol 20, 57–76.

    Article  PubMed  CAS  Google Scholar 

  4. Meresse, S., Dehouck, M. P., Delorme, P., Bensaid, M., Tauber, J. P., Delbart, C., Fruchart, J. C., and Cecchelli, R. (1989) Bovine brain endothelial cells express tight junctions and monoamine oxidase activity in long-term culture, J Neurochem 53, 1363–1371.

    Article  PubMed  CAS  Google Scholar 

  5. Audus, K. L., and Borchardt, R. T. (1987) Bovine brain microvessel endothelial cell monolayers as a model system for the blood-brain barrier, Ann N Y Acad Sci 507, 9–18.

    Article  PubMed  CAS  Google Scholar 

  6. Baranczyk-Kuzma, A., Audus, K. L., and Borchardt, R. T. (1989) Substrate specificity of phenol sulfotransferase from primary cultures of bovine brain microvessel endothelium, Neurochem Res 14, 689–691.

    Article  PubMed  CAS  Google Scholar 

  7. Brownson, E. A., Abbruscato, T. J., Gillespie, T. J., Hruby, V. J., and Davis, T. P. (1994) Effect of peptidases at the blood brain barrier on the permeability of enkephalin, J Pharmacol Exp Ther 270, 675–680.

    PubMed  CAS  Google Scholar 

  8. Huber, J. D., Egleton, R. D., and Davis, T. P. (2001) Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier, Trends Neurosci 24, 719–725.

    Article  PubMed  CAS  Google Scholar 

  9. Petty, M. A., and Lo, E. H. (2002) Junctional complexes of the blood-brain barrier: permeability changes in neuroinflammation, Prog Neurobiol 68, 311–323.

    Article  PubMed  CAS  Google Scholar 

  10. Rubin, L. L., and Staddon, J. M. (1999) The cell biology of the blood-brain barrier, Annu Rev Neurosci 22, 11–28.

    Article  PubMed  CAS  Google Scholar 

  11. Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De Simone, G., Ferguson, T. B., Ford, E., Furie, K., Gillespie, C., Go, A., Greenlund, K., Haase, N., Hailpern, S., Ho, P. M., Howard, V., Kissela, B., Kittner, S., Lackland, D., Lisabeth, L., Marelli, A., McDermott, M. M., Meigs, J., Mozaffarian, D., Mussolino, M., Nichol, G., Roger, V. L., Rosamond, W., Sacco, R., Sorlie, P., Thom, T., Wasserthiel-Smoller, S., Wong, N. D., and Wylie-Rosett, J. (2010) Heart disease and stroke statistics--2010 update: a report from the American Heart Association, Circulation 121, e46–e215.

    Article  PubMed  Google Scholar 

  12. Mark, K. S., and Davis, T. P. (2002) Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation, Am J Physiol Heart Circ Physiol 282, H1485–1494.

    PubMed  CAS  Google Scholar 

  13. Abbott, N. J., and Revest, P. A. (1991) Control of brain endothelial permeability, Cerebrovasc Brain Metab Rev 3, 39–72.

    PubMed  CAS  Google Scholar 

  14. Abbruscato, T. J., and Davis, T. P. (1999) Protein expression of brain endothelial cell E-cadherin after hypoxia/aglycemia: influence of astrocyte contact, Brain Res 842, 277–286.

    Article  PubMed  CAS  Google Scholar 

  15. Bravata, D. M., Ho, S. Y., Brass, L. M., Concato, J., Scinto, J., and Meehan, T. P. (2003) Long-term mortality in cerebrovascular disease, Stroke 34, 699–704.

    Article  PubMed  Google Scholar 

  16. Durukan, A., and Tatlisumak, T. (2007) Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia, Pharmacol Biochem Behav 87, 179–197.

    Article  PubMed  CAS  Google Scholar 

  17. Bauer, H. C., and Bauer, H. (2000) Neural induction of the blood-brain barrier: still an enigma, Cell Mol Neurobiol 20, 13–28.

    Article  PubMed  CAS  Google Scholar 

  18. DeBault, L. E., and Cancilla, P. A. (1980) gamma-Glutamyl transpeptidase in isolated brain endothelial cells: induction by glial cells in vitro, Science 207, 653–655.

    Article  PubMed  CAS  Google Scholar 

  19. Itoh, M., Nagafuchi, A., Moroi, S., and Tsukita, S. (1997) Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to alpha catenin and actin filaments, J Cell Biol 138, 181–192.

    Article  PubMed  CAS  Google Scholar 

  20. Johanson, C. E. (1980) Permeability and vascularity of the developing brain: cerebellum vs cerebral cortex, Brain Res 190, 3–16.

    Article  PubMed  CAS  Google Scholar 

  21. Tan, K. H., Dobbie, M. S., Felix, R. A., Barrand, M. A., and Hurst, R. D. (2001) A comparison of the induction of immortalized endothelial cell impermeability by astrocytes, Neuroreport 12, 1329–1334.

    Article  PubMed  CAS  Google Scholar 

  22. Tran, N. D., Correale, J., Schreiber, S. S., and Fisher, M. (1999) Transforming growth factor-beta mediates astrocyte-specific regulation of brain endothelial anticoagulant factors, Stroke 30, 1671–1678.

    Article  PubMed  CAS  Google Scholar 

  23. Fischer, S., Clauss, M., Wiesnet, M., Renz, D., Schaper, W., and Karliczek, G. F. (1999) Hypoxia induces permeability in brain microvessel endothelial cells via VEGF and NO, Am J Physiol 276, C812–820.

    PubMed  CAS  Google Scholar 

  24. Lundquist, S., Renftel, M., Brillault, J., Fenart, L., Cecchelli, R., and Dehouck, M. P. (2002) Prediction of drug transport through the blood-brain barrier in vivo: a comparison between two in vitro cell models, Pharm Res 19, 976–981.

    Article  PubMed  CAS  Google Scholar 

  25. Yang, T., Roder, K. E., and Abbruscato, T. J. (2007) Evaluation of bEnd5 cell line as an in vitro model for the blood-brain barrier under normal and hypoxic/aglycemic conditions, J Pharm Sci 96, 3196–3213.

    Article  PubMed  CAS  Google Scholar 

  26. O’Donnell, M. E., Martinez, A., and Sun, D. (1995) Cerebral microvascular endothelial cell Na-K-Cl cotransport: regulation by astrocyte-conditioned medium, Am J Physiol 268, C747–754.

    PubMed  Google Scholar 

  27. Abbruscato, T. J., Lopez, S. P., Roder, K., and Paulson, J. R. (2004) Regulation of blood-brain barrier Na,K, 2Cl-cotransporter through phosphorylation during in vitro stroke conditions and nicotine exposure, J Pharmacol Exp Ther 310, 459–468.

    Article  PubMed  CAS  Google Scholar 

  28. Hara, M. R., and Snyder, S. H. (2007) Cell signaling and neuronal death, Annu Rev Pharmacol Toxicol 47, 117–141.

    Article  PubMed  CAS  Google Scholar 

  29. Vemula, S., Roder, K. E., Yang, T., Bhat, G. J., Thekkumkara, T. J., and Abbruscato, T. J. (2009) A functional role for sodium-dependent glucose transport across the blood-brain barrier during oxygen glucose deprivation, J Pharmacol Exp Ther 328, 487–495.

    Article  PubMed  CAS  Google Scholar 

  30. Foroutan, S., Brillault, J., Forbush, B., and O’Donnell, M. E. (2005) Moderate-to-severe ischemic conditions increase activity and phosphorylation of the cerebral microvascular endothelial cell Na+−K+−Cl- cotransporter, Am J Physiol Cell Physiol 289, C1492–1501.

    Article  PubMed  CAS  Google Scholar 

  31. Hultstrom, D., Malmgren, L., Gilstring, D., and Olsson, Y. (1983) FITC-Dextrans as tracers for macromolecular movements in the nervous system. A freeze-drying method for dextrans of various molecular sizes injected into normal animals, Acta Neuropathol 59, 53–62.

    Article  PubMed  CAS  Google Scholar 

  32. Goldberg, M. P., Weiss, J. H., Pham, P. C., and Choi, D. W. (1987) N-methyl-D-aspartate receptors mediate hypoxic neuronal injury in cortical culture, J Pharmacol Exp Ther 243, 784–791.

    PubMed  CAS  Google Scholar 

  33. Yu, A. C., Gregory, G. A., and Chan, P. H. (1989) Hypoxia-induced dysfunctions and injury of astrocytes in primary cell cultures, J Cereb Blood Flow Metab 9, 20–28.

    Article  PubMed  CAS  Google Scholar 

  34. Abbruscato, T. J., and Davis, T. P. (1999) Combination of hypoxia/aglycemia compromises in vitro blood-brain barrier integrity, J Pharmacol Exp Ther 289, 668–675.

    PubMed  CAS  Google Scholar 

  35. Wolburg, H., and Lippoldt, A. (2002) Tight junctions of the blood-brain barrier: development, composition and regulation, Vascul Pharmacol 38, 323–337.

    Article  PubMed  CAS  Google Scholar 

  36. Yang, G. Y., and Betz, A. L. (1994) Reperfusion-induced injury to the blood-brain barrier after middle cerebral artery occlusion in rats, Stroke 25, 1658-1664; discussion 1664–1655

    Google Scholar 

  37. Paulson, J. R., Roder, K. E., McAfee, G., Allen, D. D., Van der Schyf, C. J., and Abbruscato, T. J. (2006) Tobacco smoke chemicals attenuate brain-to-blood potassium transport mediated by the Na, K, 2Cl-cotransporter during hypoxia-reoxygenation, J Pharmacol Exp Ther 316, 248–254.

    Article  PubMed  CAS  Google Scholar 

  38. Abbott, N. J. (2000) Inflammatory mediators and modulation of blood-brain barrier permeability, Cell Mol Neurobiol 20, 131–147.

    Article  PubMed  CAS  Google Scholar 

  39. Schroeter, M. L., Mertsch, K., Giese, H., Muller, S., Sporbert, A., Hickel, B., and Blasig, I. E. (1999) Astrocytes enhance radical defence in capillary endothelial cells constituting the blood-brain barrier, FEBS Lett 449, 241–244.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by R01 NS046526 and NS076012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Abbruscato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yang, L., Shah, K.K., Abbruscato, T.J. (2012). An In Vitro Model of Ischemic Stroke. In: Milner, R. (eds) Astrocytes. Methods in Molecular Biology, vol 814. Humana Press. https://doi.org/10.1007/978-1-61779-452-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-452-0_30

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-451-3

  • Online ISBN: 978-1-61779-452-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics