Skip to main content

Investigating the Origins of Somatic Cell Populations in the Perinatal Mouse Ovaries Using Genetic Lineage Tracing and Immunohistochemistry

  • Protocol
  • First Online:
Germline Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 825))

Abstract

Genetic lineage tracing (or fate mapping) techniques are designed to permanently label progenitor cells of target tissues, thereby allowing delineation of the progenies of labeled cells during organogenesis. This technology has been widely used in the study of cell migration and lineage specification in various organs and organisms. Here, we describe how to apply the genetic lineage tracing model in combination with immunohistochemistry to identify the potential origins of somatic cell precursors in perinatal mouse ovaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stern CD, Fraser SE (2001) Tracing the lineage of tracing cell lineages. Nat Cell Biol 3: E216–218.

    Article  PubMed  CAS  Google Scholar 

  2. Gu G, Brown JR, Melton DA (2003) Direct lineage tracing reveals the ontogeny of pancreatic cell fates during mouse embryogenesis. Mech Dev 120:35–43.

    Article  PubMed  CAS  Google Scholar 

  3. Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci USA 93:10887–10890.

    Article  PubMed  CAS  Google Scholar 

  4. Kellendonk C, Tronche F, Monaghan AP, Angrand PO, Stewart F, Schutz G (1996) Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res 24:1404–1411.

    Article  PubMed  CAS  Google Scholar 

  5. Song DL, Chalepakis G, Gruss P, Joyner AL (1996) Two Pax-binding sites are required for early embryonic brain expression of an Engrailed-2 transgene. Development 122:627–635.

    PubMed  CAS  Google Scholar 

  6. Zinyk DL, Mercer EH, Harris E, Anderson DJ, Joyner AL (1998) Fate mapping of the mouse midbrain-hindbrain constriction using a site-specific recombination system. Curr Biol 8:665–668.

    Article  PubMed  CAS  Google Scholar 

  7. Bai CB, Auerbach W, Lee JS, Stephen D, Joyner AL (2002) Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development 129:4753–4761.

    Article  PubMed  CAS  Google Scholar 

  8. Ahn S, Joyner AL (2004) Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell 118:505–516.

    Article  PubMed  CAS  Google Scholar 

  9. Huang CC, Miyagawa S, Matsumaru D, Parker KL, Yao HH Progenitor cell expansion and organ size of mouse adrenal is regulated by sonic hedgehog. Endocrinology 151:1119–1128.

    Google Scholar 

  10. Zawadzka M, Rivers L E, Fancy SP, Zhao C, Tripathi R, Jamen F, Young K, Goncharevich A, Pohl H, Rizzi M, Rowitch DH, Kessaris N, Suter U, Richardson WD, Franklin RJ. CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6:578–590.

    Google Scholar 

  11. Wijgerde M, Ooms M, Hoogerbrugge JW, Grootegoed JA (2005) Hedgehog signaling in mouse ovary: Indian hedgehog and desert hedgehog from granulosa cells induce target gene expression in developing theca cells. Endocrinology 146:3558–3566.

    Article  PubMed  CAS  Google Scholar 

  12. Russell MC, Cowan RG, Harman RM, Walker AL, Quirk SM (2007) The hedgehog signaling pathway in the mouse ovary. Biol Reprod 77:226–236.

    Article  PubMed  CAS  Google Scholar 

  13. Ren Y, Cowan RG, Harman RM, Quirk SM (2009) Dominant activation of the hedgehog signaling pathway in the ovary alters theca development and prevents ovulation, Mol Endocrinology 23:711–723.

    Article  CAS  Google Scholar 

  14. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71.

    Article  PubMed  CAS  Google Scholar 

  15. Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4.

    Article  PubMed  CAS  Google Scholar 

  16. Indra AK, Warot X, Brocard J, Bornert JM, Xiao JH, Chambon P, Metzger D (1999) Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res 27:4324–4327.

    Article  PubMed  CAS  Google Scholar 

  17. Friedrich G, and Soriano P (1991) Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev 5:1513–1523.

    Article  PubMed  CAS  Google Scholar 

  18. Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S, Lin JS, Sawicki JA, Cotsarelis G (2004) Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22:411–417.

    Article  PubMed  CAS  Google Scholar 

  19. Danielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol 8:1323–1326.

    Article  PubMed  CAS  Google Scholar 

  20. Robinson SP, Langan-Fahey SM, Johnson DA, Jordan VC (1991) Metabolites, pharmacodynamics, and pharmacokinetics of tamoxifen in rats and mice compared to the breast cancer patient. Drug Metab Dispos 19:36–43.

    PubMed  CAS  Google Scholar 

  21. Zervas M, Millet S, Ahn S, Joyner AL (2004) Cell behaviors and genetic lineages of the mesencephalon and rhombomere 1. Neuron 43:345–357.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institute of Health (HD046861, HD059661, and ES018163). It was also supported in part by the Intramural Research Program of the National Institute of Environmental Health Sciences (NIEHS) and NIH Graduate Partnership Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humphrey Hung-Chang Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Liu, C., Paczkowski, M., Othman, M., Yao, H.HC. (2012). Investigating the Origins of Somatic Cell Populations in the Perinatal Mouse Ovaries Using Genetic Lineage Tracing and Immunohistochemistry. In: Chan, WY., Blomberg, L. (eds) Germline Development. Methods in Molecular Biology, vol 825. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-436-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-436-0_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-435-3

  • Online ISBN: 978-1-61779-436-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics