Skip to main content

Scanning Electron Microscopy of Bone

  • Protocol
  • First Online:
Bone Research Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 816))

Abstract

This chapter described methods for Scanning Electron Microscopical imaging of bone and bone cells. Backscattered electron (BSE) imaging is by far the most useful in the bone field, followed by secondary electrons (SE) and the energy dispersive X-ray (EDX) analytical modes. This chapter considers preparing and imaging samples of unembedded bone having 3D detail in a 3D surface, topography-free, polished or micromilled, resin-embedded block surfaces, and resin casts of space in bone matrix. The chapter considers methods for fixation, drying, looking at undersides of bone cells, and coating. Maceration with alkaline bacterial pronase, hypochlorite, hydrogen peroxide, and sodium or potassium hydroxide to remove cells and unmineralised matrix is described in detail. Attention is given especially to methods for 3D BSE SEM imaging of bone samples and recommendations for the types of resin embedding of bone for BSE imaging are given. Correlated confocal and SEM imaging of PMMA-embedded bone requires the use of glycerol to coverslip. Cathodoluminescence (CL) mode SEM imaging is an alternative for visualising fluorescent mineralising front labels such as calcein and tetracyclines. Making spatial casts from PMMA or other resin embedded samples is an important use of this material. Correlation with other imaging means, including microradiography and microtomography is important. Shipping wet bone samples between labs is best done in glycerol. Environmental SEM (ESEM, controlled vacuum mode) is valuable in eliminating ­“charging” problems which are common with complex, cancellous bone samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howell, P. G. T and Boyde, A. (2003) Volumes from which calcium and phosphorus X-rays arise in electron probe emission microanalysis of bone: Monte Carlo simulation. Calcif. Tissue Int. 72, 745–749.

    Article  PubMed  CAS  Google Scholar 

  2. Boyde, A. and Shapiro, I.M. (1980) Energy dispersive X-ray elemental analysis of isolated epiphyseal growth plate chondrocyte fragments. Histochem. 69, 85–94.

    Article  CAS  Google Scholar 

  3. Boyde, A., Reid, S. A. (1983) Tetracycline cathodoluminescence in bone, dentine and enamel. Histochem. 77, 525–533.

    Article  CAS  Google Scholar 

  4. Boyde, A., Reid, S. A. (1983) Simple collectors for cathodoluminescence in the SEM made from aluminium foil. J. Microscopy 132, 239–242.

    Article  CAS  Google Scholar 

  5. Boyde, A. (2008) Low kV and video-rate, beam-tilt stereo for viewing live-time experiments in the SEM Chap. 7 pp. 197–214 and colour plates 4–11. In: Schatten H, Pawley JB (eds) Biological Low Voltage Scanning Electron Microscopy Springer New York. ISBN 978-0-387-72970-1.

    Google Scholar 

  6. Boyde, A. (1984) Methodology of calcified tissue specimen preparation for scanning electron microscopy. In: Methods of Calcified Tissue Preparation, pp251-307: Dickson GR (Ed), Elsevier, Amsterdam.

    Google Scholar 

  7. Boyde, A. (1972) Scanning electron microscopic studies of bone. In: The Biochemistry and Physiology of Bone, 2nd edn, Vol.1, pp259–310 Bourne GH (Ed) Academic Press, New York.

    Google Scholar 

  8. Boyde, A., Jones, S. J. (1996) Scanning electron microscopy of bone: instrument, specimen and issues. Microscopy Research and Technique 33, 92–120.

    Article  PubMed  CAS  Google Scholar 

  9. Boyde, A., Jones, S. J. (1983) Scanning electron microscopy of cartilage. In: Cartilage I: 105–148, Hall BK (Ed), Academic Press, New York.

    Google Scholar 

  10. Boyde, A., Ali, N. N., and Jones, S. J. (1984) Resorption of dentine by isolated osteoclasts in vitro. Brit. Dent. J. 156, 216–220.

    Article  PubMed  CAS  Google Scholar 

  11. Boyde, A., and Maconnachie, E. (1983) Not quite critical point drying. In: Science of Biological Specimen Preparation, pp71–75 : Revel JP, Barnard T, Haggis GH (Eds) SEM Inc, AMF O’Hare, IL.

    Google Scholar 

  12. Boyde, A., and Maconnachie, E. (1979) Volume changes during preparation of mouse embryonic tissue for scanning electron microscopy. Scanning 2:149–163.

    Article  CAS  Google Scholar 

  13. Boyde, A., Bailey, E., Jones, S.J., and Tamarin, A. (1977) Dimensional changes during ­specimen preparation for scanning electron microscopy. Scanning Electron Microscopy 1, 507–518.

    Google Scholar 

  14. Boyde, A., Ali, N. N., Jones, S. J. (1985) Optical and scanning electron microscopy in the single osteoclast resorption assay. Scanning Electron Microscopy 3, 1259–1271.

    Google Scholar 

  15. Boyde, A., and Jones, S. J. (1991) Pitfalls in pit measurement. Calcif. Tissue Int. 49, 65–70.

    Article  PubMed  CAS  Google Scholar 

  16. Boyde, A. (1973) Quantitative photogrammetric analysis and qualitative stereoscopic analysis of scanning electron microscope images. J. Microscopy 98, 452–471.

    Article  Google Scholar 

  17. Boyde, A. (2004) Improved depth of field in the scanning electron microscope derived from through focus image stacks. Scanning 26, 265–269

    Article  PubMed  Google Scholar 

  18. Boyde, A. (2003) Improved digital SEM of cancellous bone: scanning direction of detection, through focus for in-focus and sample orientation. J. Anat. 202:183–194.

    Article  PubMed  Google Scholar 

  19. Ferguson, V. L., Bushby, A. J., and Boyde, A. (2003) Nanomechanical properties and mineral concentration in articular calcified cartilage and subchondral bone. J. Anat. 203, 191–202.

    Article  PubMed  Google Scholar 

  20. Howell, P. G. T., Davy, K. M. W., and Boyde, A. (1998) Mean atomic number and backscattered electron coefficient calculations for some materials with low mean atomic number. Scanning 20, 35–40.

    Article  CAS  Google Scholar 

  21. Boyde, A., Travers, R., Glorieux, F. H., and Jones, S. J. (1999) The mineralization density of iliac crest bone from children with osteogenesis imperfecta. Calcif. Tissue Int. 64, 185–190

    Article  PubMed  CAS  Google Scholar 

  22. Boyde, A., Lovicar, L., and Zamecnik, J. (2005) Combining confocal and BSE SEM imaging for bone block surfaces. European Cells & Materials 26, 33–38.

    Google Scholar 

  23. Doube, M., Firth, E. C., and Boyde, A. (2005) Registration of confocal scanning laser microscopy and quantitative backscattered electron images for the temporospatial quantification of mineralization density in 18-month old thoroughbred racehorse articular calcified cartilage. Scanning. 27, 219226.

    Google Scholar 

  24. Doube, M., Firth, E. C., and Boyde, A. (2007) Variations in articular calcified cartilage by site and exercise in the 18-month-old equine distal metacarpal condyle. OsteoArthritis &Cartilage 15, 1283–1292.

    Article  CAS  Google Scholar 

  25. Bembey, A. K., Oyen, M. L., Bushby, A. J., and Boyde, A. (2006) Viscoelastic properties of bone as a function of hydration state determined by nanoindentation. Philosophical Magazine 86 (33–35 SPEC. ISSUE), 5691–5703

    Google Scholar 

  26. Oyen, M. L., Ferguson, V. L., Bembey, A. K., Bushby, A. J., and Boyde, A. (2008) Composite Bounds on the Elastic Modulus of Bone. J. Biomechanics 41:2585–2588.

    Article  Google Scholar 

  27. Levanon, D., and Stein, H. (1999) Tannic acid and thiocarbohydrazide as structural reinforcement agents in the preparation of rabbit knee articular cartilage for the scanning electron microscope. Histochem. J. 31, 71–73.

    Article  PubMed  CAS  Google Scholar 

  28. Severs, N. J. (2007) Freeze-fracture electron microscopy. Nature Protocols 2, 547–576.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Maureen Arora for her patient help in carrying out many of the procedures described in this chapter on many thousands of samples. Her employment has been funded by the Horserace Betting Levy Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Boyde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Boyde, A. (2012). Scanning Electron Microscopy of Bone. In: Helfrich, M., Ralston, S. (eds) Bone Research Protocols. Methods in Molecular Biology, vol 816. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-415-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-415-5_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-414-8

  • Online ISBN: 978-1-61779-415-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics