Skip to main content

Performance Comparison of Multiple Microarray Platforms for Gene Expression Profiling

  • Protocol
  • First Online:
Next Generation Microarray Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 802))

Abstract

With genome-wide gene expression microarrays being increasingly applied in various areas of biomedical research, the diversity of platforms and analytical methods has made comparison of data from multiple platforms very challenging. In this chapter, we describe a generalized framework for systematic comparisons across gene expression profiling platforms, which could accommodate both the available commercial arrays and “in-house” platforms, with both one-dye and two-dye platforms. It includes experimental design, data preprocessing protocols, cross-platform gene matching approaches, measures of data consistency comparisons, and considerations in biological validation. In the design of this framework, we considered the variety of platforms available, the need for uniform quality control procedures, real-world practical limitations, statistical validity, and the need for flexibility and extensibility of the framework. Using this framework, we studied ten diverse microarray platforms, and we conclude that using probe sequences matched at the exon level is important to improve cross-platform data consistency compared to annotation-based matches. Generally, consistency was good for highly expressed genes, and variable for genes with lower expression values, as confirmed by QRT-PCR. After stringent preprocessing, commercial arrays were more consistent than “in-house” arrays, and by most measures, one-dye platforms were more consistent than two-dye platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bauer JW, Bilgic H, Baechler EC (2009) Gene-expression profiling in rheumatic disease: tools and therapeutic potential. Nat Rev Rheumatol 5:257–265.

    Article  PubMed  CAS  Google Scholar 

  2. Cheang MC, van de Rijn M, Nielsen TO (2008) Gene expression profiling of breast cancer. Annu Rev Pathol 3:67–97.

    Article  PubMed  CAS  Google Scholar 

  3. Garcia-Escudero R, Paramio JM (2008) Gene expression profiling as a tool for basic analysis and clinical application of human cancer. Mol Carcinog 47:573–579.

    Article  PubMed  CAS  Google Scholar 

  4. Giordano TJ (2008) Transcriptome analysis of endocrine tumors: clinical perspectives. Ann Endocrinol (Paris) 69:130–134.

    CAS  Google Scholar 

  5. Yauk CL, Berndt ML (2007) Review of the literature examining the correlation among DNA microarray technologies. Environ Mol Mutagen 48:380–394.

    Article  PubMed  CAS  Google Scholar 

  6. Kuo WP, Liu F, Trimarchi J et al (2006) A sequence-oriented comparison of gene expression measurements across different hybridization-based technologies. Nat Biotechnol 24:832–840.

    Article  PubMed  CAS  Google Scholar 

  7. Brazma A (2009) Minimum Information About a Microarray Experiment (MIAME) – successes, failures, challenges. Scientific World Journal 9:420–423.

    PubMed  CAS  Google Scholar 

  8. Brazma A, Hingamp P, Quackenbush J et al (2001) Minimum information about a microarray experiment (MIAME) – toward standards for microarray data. Nat Genet 29:365–371.

    Article  PubMed  CAS  Google Scholar 

  9. MIAME. (Minimum Information About a Microarray Experiment) http://www.mged.org/Workgroups/MIAME/miame.html.

  10. Baker SC, Bauer SR, Beyer RP et al (2005) The External RNA Controls Consortium: a progress report. Nat Methods 2:731–734.

    Article  PubMed  CAS  Google Scholar 

  11. ERCC. (The External RNA Controls Consortium) http://www.cstl.nist.gov/biotech/Cell&TissueMeasurements/GeneExpression/ERCC.htm.

  12. Shi L, Reid LH, Jones WD et al (2006) The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24:1151–1161.

    Article  PubMed  CAS  Google Scholar 

  13. MAQC. (Microarray Quality Control) http://www.fda.gov/nctr/science/centers/toxicoinformatics/maqc/.

  14. Enkemann SA (2010) Standards affecting the consistency of gene expression arrays in clinical applications. Cancer Epidemiol Biomarkers Prev 19:1000–1003.

    Article  PubMed  CAS  Google Scholar 

  15. GEO. (Gene Expression Omnibus) http://www.ncbi.nlm.nih.gov/geo/.

  16. The Cepko Laboratory at Harvard Medical School (http://genetics.med.harvard.edu/~cepko/).

  17. Carter SL, Eklund AC, Mecham BH et al (2005) Redefinition of Affymetrix probe sets by sequence overlap with cDNA microarray probes reduces cross-platform inconsistencies in cancer-associated gene expression measurements. BMC Bioinformatics 6:107.

    Article  PubMed  Google Scholar 

  18. Mecham BH, Klus GT, Strovel J et al (2004) Sequence-matched probes produce increased cross-platform consistency and more reproducible biological results in microarray-based gene expression measurements. Nucleic Acids Res 32:e74.

    Article  PubMed  Google Scholar 

  19. Mecham BH, Wetmore DZ, Szallasi Z et al (2004) Increased measurement accuracy for sequence-verified microarray probes. Physiol Genomics 18:308–315.

    Article  PubMed  CAS  Google Scholar 

  20. Lee ML, Kuo FC, Whitmore GA et al (2000) Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations. Proc Natl Acad Sci U S A 97:9834–9839.

    Article  PubMed  CAS  Google Scholar 

  21. The R Project for Statistical Computing: http://www.r-project.org/.

  22. Pounds S, Cheng C (2005) Statistical development and evaluation of microarray gene expression data filters. J Comput Biol 12:482–495.

    Article  PubMed  CAS  Google Scholar 

  23. Shippy R, Sendera TJ, Lockner R et al (2004) Performance evaluation of commercial short-oligonucleotide microarrays and the impact of noise in making cross-platform correlations. BMC Genomics 5:61.

    Article  PubMed  Google Scholar 

  24. Berger JA, Hautaniemi S, Jarvinen AK et al (2004) Optimized LOWESS normalization parameter selection for DNA microarray data. BMC Bioinformatics 5:194.

    Article  PubMed  Google Scholar 

  25. Bolstad BM, Irizarry RA, Astrand M et al (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193.

    Article  PubMed  CAS  Google Scholar 

  26. Workman C, Jensen LJ, Jarmer H et al (2002) A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biol 3: research0048.

    Google Scholar 

  27. Bussey KJ, Kane D, Sunshine M et al (2003) MatchMiner: a tool for batch navigation among gene and gene product identifiers. Genome Biol 4:R27.

    Article  PubMed  Google Scholar 

  28. Kent WJ (2002) BLAT – the BLAST-like alignment tool. Genome Res 12:656–664.

    PubMed  CAS  Google Scholar 

  29. UCSC Genome Site: http://www.genomearchive.cse.ucsc.edu/goldenPath/mmFeb2003/bigZips/.

  30. Liu G, Loraine AE, Shigeta R et al (2003) NetAffx: Affymetrix probesets and annotations. Nucleic Acids Res 31:82–86.

    Article  PubMed  CAS  Google Scholar 

  31. Irizarry RA, Warren D, Spencer F et al (2005) Multiple-laboratory comparison of microarray platforms. Nat Methods 2:345–350.

    Article  PubMed  CAS  Google Scholar 

  32. Ambion: http://www.ambion.com/catalog/CatNum.php?6050.

  33. Stratagene: http://www.stratagene.com/manuals/740000.pdf.

  34. Blackshaw S, Fraioli RE, Furukawa T et al (2001) Comprehensive analysis of photoreceptor gene expression and the identification of candidate retinal disease genes. Cell 107:579–589.

    Article  PubMed  CAS  Google Scholar 

  35. Blackshaw S, Harpavat S, Trimarchi J et al (2004) Genomic analysis of mouse retinal development. PLoS Biol 2:E247.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all the microarray vendors and facilities/laboratories which have actively participated this large-scale study. The authors were supported by the functional genomics program (FUGE) in the Research council of Norway for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eivind Hovig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Liu, F., Kuo, W.P., Jenssen, TK., Hovig, E. (2012). Performance Comparison of Multiple Microarray Platforms for Gene Expression Profiling. In: Wang, J., Tan, A., Tian, T. (eds) Next Generation Microarray Bioinformatics. Methods in Molecular Biology, vol 802. Humana Press. https://doi.org/10.1007/978-1-61779-400-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-400-1_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-399-8

  • Online ISBN: 978-1-61779-400-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics