Skip to main content

Stimuli Responsive Polymers for Nanoengineering of Biointerfaces

  • Protocol
  • First Online:
Nanotechnology in Regenerative Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 811))

Abstract

There is an increasing demand on the development of “smart” switchable interfaces since controlling surface topography and chemical functionality on a nanometer scale is crucial for numerous biomedical applications. Those surfaces, which are based on stimuli responsive polymers (SRPs), are able to modify their interactions with cells, biomolecules responding to different physical (e.g., temperature) or chemical (e.g., pH) stimuli. Such behavior may partially mimic complex dynamic properties of natural systems that are regulated by many biological stimuli. This paper reviews major studies and applications of SRPs as biointerfaces in a form of thin polymeric films (gels) and surface tethered polymers (brushes).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ikada, Y. (1994) Surface modification of polymers for medical applications. Biomaterials 15, 725–736.

    CAS  Google Scholar 

  2. Chu, P. K., Chen, J. Y., Wang, L. P., Huang, N. (2002) Plasma-surface modification of biomaterials Mater. Sci. Eng. R-Reports 36, 143–206.

    Google Scholar 

  3. Park, G. E., Pattison, M. A., Park, K., Webster, T. J. (2005) Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds, Biomaterials 26, 3075–3082.

    CAS  Google Scholar 

  4. Chilkoti, A. Hubbell, J. A. (2005) Biointerface science. MRS Bulletin 30, 175–176.

    Google Scholar 

  5. Lahann, J., Langer, R. (2005) Smart materials with dynamically controllable surfaces. MRS Bulletin 30, 185–188.

    CAS  Google Scholar 

  6. Mrksich, M. (2005) Dynamic substrates for cell biology. MRS Bulletin 30, 180–184.

    CAS  Google Scholar 

  7. Heskins, M. Guillet, J. E. (1968) Solution properties of poly(N-isopropylacrylamide). J. Macromol. Sci., Chem. A2 , 14411455.

    Google Scholar 

  8. Winnik, F. M. (1990) Fluorescence studies of aqueous solutions of poly(N- isopropylacrylamide) below and above their LCST. Macromolecules 23, 233–242.

    CAS  Google Scholar 

  9. Siegel, R.A., Firestone, B. A. (1988) pH-dependent equilibrium swelling properties of hydrophobic polyelectrolyte copolymer gels. Macromolecules 21, 3254.

    CAS  Google Scholar 

  10. Kontturi, K., Mafé, S., Manzanares, J. A., Svarfvar, B. L., Viinikka, P. Modeling of the Salt and pH Effects on the Permeability of Grafted Porous Membranes. (1996) Macromolecules 29, 5740.

    Google Scholar 

  11. Kwon, I. C., Bae, Z. H., Kim, S. W. (1991) Electrically erodible polymer gel for controlled release of drugs. Nature 354, 291–293.

    CAS  Google Scholar 

  12. Miyata, T., Asami, N., Uragami, T. (1999) A reversibly antigen-responsive hydrogel. Nature 399, 766.

    CAS  Google Scholar 

  13. Dai, S., Ravi, P., Tam, K.C. (2009) Thermo- and photo-responsive polymeric systems. Soft Matter 5, 2513–2533.

    CAS  Google Scholar 

  14. Kumar, A., Srivastava, A., Galaev, I.Y., Mattiasson, B. (2007) Smart polymers: Physical forms and bioengineering applications. Prog. Polym. Sci. (Oxford) 32, 1205–1237.

    CAS  Google Scholar 

  15. Alexander, C., Shakesheff, K.M. (2006) Responsive polymers at the biology/materials science interface.Adv. Mat. 18, 3321–3328.

    CAS  Google Scholar 

  16. Schild, H.G. (1992) Poly (N-isopropylacryl­amide): experiment, theory and application. Prog. Polym. Sci. 17, 163–249.

    CAS  Google Scholar 

  17. Yeo, W. S., Yousaf, M. N., Mrksich, M. (2003) Dynamic Interfaces between Cells and Surfaces: Electroactive Substrates that Sequentially Release and Attach Cells. J. Am. Chem. Soc. 125, 14994.

    CAS  Google Scholar 

  18. Mendes, P. M., Christman, K. L., Parthasarathy, P., Schopf, E., Ouyang, J., Yang, Y., Preece, J. A., Maynard, H. D., Chen, Y., Stoddart, J. F. (2007) Electrochemically controllable conjugation of proteins on surfaces. Bioconjugate Chem. 18, 1919.

    CAS  Google Scholar 

  19. Auernheimer, J., Dahmen, C., Hersel, U., Bausch, A., Kessler, H. (2005) Photoswitched Cell Adhesion on Surfaces with RGD Peptides. J. Am. Chem. Soc. 127, 16107.

    CAS  Google Scholar 

  20. Kost, J., Langer, R. (2001) Responsive polymeric delivery systems. Adv. Drug Deliv. Rev. 46, 125–148.

    CAS  Google Scholar 

  21. Chilkoti, A., Dreher, M. R., Meyer, D. E., Raucher, D. (2002) Targeted drug delivery by thermallyresponsive polymers. Adv. Drug Deliv. Rev. 54, 613–630.

    CAS  Google Scholar 

  22. Langer, R., Tirrell, D. A. (2004) Designing materials for biology and medicine. Nature 428, 487–492.

    CAS  Google Scholar 

  23. Cole, M.A., Voelcker, N.H., Thissen, H., Griesser, H.J. (2009) Stimuli-responsive interfaces and systems for the control of protein-surface and cell-surface interactions. Biomaterials 30, 18271850.

    CAS  Google Scholar 

  24. Alexander, C., Shakesheff, K. M. (2006) Responsive Polymers at the Bilology/Materials Science Interface Adv. Mat. 18, 3321–3328.

    CAS  Google Scholar 

  25. Norrman, K., Ghanbari-Siahkali, A., Larsen, N. B. (2005) Studies of spin-coated polymer films. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 101, 174.

    Google Scholar 

  26. Decher, G. (1997) Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science 277, 1232.

    CAS  Google Scholar 

  27. Mittal, K. L., Lee, K.-W. (1997) Polymer Surfaces and Interfaces: Characterization, Modification and Applications, VSP, Utrecht.

    Google Scholar 

  28. Bertrand, P., Jonas, A., Laschewsky, A., Legras, R. (2000) Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: Suitable materials, structure and properties. Macromol. Rapid Commun. 21, 319.

    CAS  Google Scholar 

  29. Boudou, T., Crouzier, T., Ren, K., Blin, G., Picart, C. (2009) Multiple Functionalities of Polyelectrolyte Multilayer Films: New Biomedical Applications. Adv. Mat. 21, 1–27.

    Google Scholar 

  30. Sukhishvili, S. A. (2005) Responsive polymer films and capsules via layer-by-layer assembly. Curr. Opinion Coll. Interface Sci. 10, 37–44.

    CAS  Google Scholar 

  31. Tang, Z., Wang, Y., Podsiadlo, P., Kotov, N.A. (2006) Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering. Adv. Mat. 18, 3203–3224.

    CAS  Google Scholar 

  32. Picart, C. (2008) Polyelectrolyte multilayer film: From physico-chemical properties to the control of cellular processes. Curr. Medicinal Chem. 15, 685–697.

    CAS  Google Scholar 

  33. De Geest, B. G., De Koker, S., Sukhorukov, G. B., Kreft, O., Parak, W. J., Skirtach, A. G., Demeester, J., De Smedt, S. C., Henninka, W. E. (2009) Polyelectrolyte microcapsules for biomedical applications. Soft Matter 5, 282.

    Google Scholar 

  34. Bulwan, M, Zapotoczny, S., Nowakowska, M. (2009) Robust one-component chitosan-based ultrathin films fabricated using layer-by-layer technique. Soft Matter 5,4726 – 4732.

    CAS  Google Scholar 

  35. von Recum, H.A., Kim, S.W., Kikuchi, A., Okuhara, M., Sakurai, Y., Okano, T. (1998) Novel thermally reversible hydrogel as detachable cell culture substrate. J. Biomed. Mater. Res. 40, 631–639.

    Google Scholar 

  36. Jeonga, B., Kim, S.W., Bae, Y. H. (2002) Thermosensitive sol–gel reversible hydrogels. Adv. Drug Deliv. Rev. 54, 37–51.

    Google Scholar 

  37. Pan, Y.V., Wesley, R.A., Luginbuhl, R., Denton, D.D., Ratner, B.D. (2001) Plasma polymerized N-isopropylacrylamide: Synthesis and characterization of a smart thermally responsive coating. Biomacromolecules 2, 32–36.

    CAS  Google Scholar 

  38. da Silva, R. M. P., Mano, J. F., Reis, R. L. (2007) Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries. Trends Biotechnology 25, 577–583.

    Google Scholar 

  39. Skotheim, T. A., Reynolds, J. R. (2007) Handbook of Conductive Polymers, CRC Press, Boca Raton.

    Google Scholar 

  40. Ahn, Y. H., Mironov, V. A., Gutowska, A. (2001) Reversible gelling culture media for in-vitro cell culture in three-dimensional matrices. US patent, US6103528.

    Google Scholar 

  41. Yamada, N., Okano, T., Sakai, H., Karikusa, F., Sawasaki Y., Sakurai, Y. (1990) Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Makromol. Chem., Rapid Commun., 11, 571.

    Google Scholar 

  42. Canavan, H. E., Cheng, X. H., Graham, D. J., Ratner B. D., Castner, D. G. (2005) J. Biomed. Mater. Res. Part A 75A, 1–13.

    CAS  Google Scholar 

  43. Kushida, A., Yamato, M., Konno, C., Kikuchi, A., Sakurai, Y., Okano, T. (1999) Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-­responsive culture surfaces. J. Biomed. Mater. Res. Part A 45, 355–362.

    CAS  Google Scholar 

  44. Ide, T., Nishida, K., Yamato, M., Sumide, T., Utsumi, M., Nozaki, T., Kikuchi, A., Okano, T., Tano, Y. (2006) Structural characterization of bioengineered human corneal endothelial cell sheets fabricated on temperature-responsive culture dishes. Biomaterials 27, 607–614.

    CAS  Google Scholar 

  45. Yamato, M., Okano, T. (2004) Cell sheet engineering. Mater Today 7, 42–47.

    CAS  Google Scholar 

  46. Yang, J., Yamato, M., Konno, C., Nishimoto, A., Sekine, H., Fukai, F., Okano, T. (2005) Cell sheetengineering: Recreating tissues without biodegradable scaffolds. Biomaterials 26, 6415–6422.

    CAS  Google Scholar 

  47. Akiyama, Y., Kikuchi, A., Yamato, M., Okano, T. (2004) Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir 20, 5506–5511.

    CAS  Google Scholar 

  48. Yang, J., Yamato, M., Shimizu, T., Sekine, H., Ohashi, K., Kanzaki, M., Ohki, T., Nishida, K., Okano, T. (2007) Reconstruction of functional tissues with cell sheet engineering. Biomaterials 28, 5033–5043.

    CAS  Google Scholar 

  49. Kikuchi, A., Okano, T. (2005) Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. J. Control Release 101,69–84.

    CAS  Google Scholar 

  50. Falconnet, D., Csucs, G., Michelle Grandin, H., Textor, M. (2006) Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27, 3044–3063.

    CAS  Google Scholar 

  51. Engel, E., Michiardi, A., Navarro, M., Lacroix, D., Planell, J.A. (2008) Nanotechnology in regenerative medicine: the materials side. Trends Biotechnology 26, 39–47.

    CAS  Google Scholar 

  52. Zinger, O., Zhao, G., Schwartz, Z., Simpson, J., Wieland, M., Landolt, D., Boyan, B., (2005) Differential regulation of osteoblasts by substrate microstructural features. Biomaterials 26, 1837–1847.

    CAS  Google Scholar 

  53. Teixeira, A.I. McKie, G. A., Foley, J. D., Bertics, P. J., Nealey, P. F., Murphy, C. J. (2006) The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography. Biomaterials 27, 3945–3954.

    CAS  Google Scholar 

  54. Tsuda Y, Kikuchi A, Yamato M, Nakao A, Sakurai Y, Umezu M, Okano, T. (2005) The use of patterned dual thermoresponsive surfaces for the collective recovery as co-cultured cell sheets. Biomaterials 26, 1885–1893.

    CAS  Google Scholar 

  55. Kujawa, P., Winnik, F. M. (2001) Volumetric studies of aqueous polymer solutions using pressure perturbation calorimetry: a new look at the temperature-induced phase transition of poly(N-isopropylacrylamide) in water and D2O. Macromolecules 43, 4130–4135.

    Google Scholar 

  56. Tatsuma, T., Saito, K., Oyama, N. (1994) Enzyme-exchangeable enzyme electrodes employing a thermoshrinking redox gel. J. Chem. Soc., Chem. Commun. 1853.

    Google Scholar 

  57. Yang, H., Choi, C. A., Chung, K. H., Jun, C.-H., Kim, Y. T. (2004) An independent, temperature controllablemicroelectrode array. Anal. Chem. 76, 1537–1543.

    CAS  Google Scholar 

  58. Cheng, X., Wang, Y., Hanein, Y., Bohringer, K., Ratner, B. D. (2004) Novel cell patterning using microheater-controlled thermoresponsive plasma films. J. Biomed. Mater. Res. Part A 70, 159–168.

    Google Scholar 

  59. Ruoslahti, E., Pierschbacher, M. D. (1987) New perspectives in cell adhesion: RGD and integrins. Science 238, 491.

    CAS  Google Scholar 

  60. Stile, R. A., Healy, K. E. (2001) Thermo-responsive peptide-modified hydrogels for ­tissue regeneration.Biomacromolecules 2, 185–194.

    CAS  Google Scholar 

  61. Ebara, M., Yamato, M., Aoyagi, T., Kikuchi, A., Sakai, K., Okano, T. (2004) Immobilization of cell adhesivepeptides to temperature-responsive surfaces facilitates both serum-free cell adhesion and noninvasive cell harvest. Tissue Eng. 10, 1125–1135.

    CAS  Google Scholar 

  62. Urry, D. W., Luan, C. H., Parker, T. M., Gowda, D. C., Prasad, K. U., Reid, M. C., Safavy, A. (1991) Temperature of polypeptide inverse temperature transition depends on mean residue hydrophobicity. J. Am. Chem. Soc. 113, 4346–4348.

    CAS  Google Scholar 

  63. Rodríguez-Cabello, J. C., Prieto, S., Reguera, J., Arias, F. J., Ribeiro, A. (2007) Biofunctional design of elastin-like polymers for advanced applications in nanobiotechnology. J. Bio­mater. Sci. Polym. Ed. 18, 269–286.

    Google Scholar 

  64. Urry, D. W. (1997) Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J. Phys. Chem. B 101, 11007–11028.

    CAS  Google Scholar 

  65. Hyun, J., Lee, W.-K., Nath, N., Chilkoti, A., Zauscher, S. (2004) Capture and release of proteins on the nanoscale by stimuli-responsive elastin-like polypeptide “switches”. J. Am. Chem. Soc. 126, 7330–7335.

    CAS  Google Scholar 

  66. Meyer, D. E., Chilkoti, A. (1999) Purification of recombinant proteins by fusion with thermally responsivePolypeptides. Nat. Biotechnol. 17, 1112–1115.

    CAS  Google Scholar 

  67. Nath, N., Chilkoti, A. (2003) Fabrication of a reversible protein array directly from cell lysate using a stimuli-responsive polypeptide. Anal. Chem. 75, 709–715.

    CAS  Google Scholar 

  68. Kim, J. Y., Mulchandani, A. Chen, W. (2005) Temperature-triggered purification of antibodies. Biotechnol. Bioeng. 90, 373–379.

    CAS  Google Scholar 

  69. Serpe, M. J., Jones, C. D., Lyon, L. A. (2003) Layer-by-layer deposition of thermoresponsive microgel thin films. Langmuir 19, 8759.

    CAS  Google Scholar 

  70. Nolan, Ch. M., Serpe, M. J., Lyon, L. A. (2004) Thermally modulated insulin release from microgel thin films. Biomacromolecules 5, 1940.

    CAS  Google Scholar 

  71. Serpe, M. J., Yarmey, K. A., Nolan, Ch. M., Lyon, L. A.(2005) Doxorubicin uptake and release from microgel thin films. Biomacromolecules 6, 408.

    CAS  Google Scholar 

  72. Gao, J., Haidar, G., Lu, X., Hu, Z. (2001) Self-association of hydroxypropylcellulose in water. Macromolecules 34, 2242–2247.

    CAS  Google Scholar 

  73. Li, L., Thangamathesvaran, P. M., Yue, C. Y., Tam, K. C., Hu, X., Lam, Y. C. (2001) Gel Network Structure of Methylcellulose in Water. Langmuir 17, 8062–8068.

    CAS  Google Scholar 

  74. Heitfeld, K.A., Guo, T., Yang, G., Schaefer, D.W. (2008) Temperature responsive hydroxypropyl cellulose for encapsulation. Mater. Sci. Eng. C 28, 374–379.

    CAS  Google Scholar 

  75. Burke, S.E., Barrett, Ch. J. (2004) pH-dependent loading and release behavior of small hydrophilic molecules in weak polyelectrolyte multilayer films. Macromolecules 37, 5375.

    CAS  Google Scholar 

  76. Hiller, J., Rubner, M. F. (2003) Reversible molecular memory and pH-switchable swelling transitions in polyelectrolyte multilayers. Macromolecules 36, 4078.

    CAS  Google Scholar 

  77. Thompson, M. T., Berg, M. C., Tobias, I. S., Rubner M. F., Van Vliet, K. J. (2005) Tuning compliance of nanoscale polyelectrolyte multilayers to modulate cell adhesion. Biomaterials 26, 6836–6845.

    CAS  Google Scholar 

  78. Gerard, M., Chaubey, A., Malhotra, B. D. (2002) Application of polyaniline as enzyme based biosensor Biosens. Bioelectron. 17, 345.

    CAS  Google Scholar 

  79. George, P. M., La Van, D. A., Burdick, J. A., Chen, C. Y., Liang E., Langer, R. (2006) Electrically Controlled Drug Delivery from Biotin-Doped Conductive Polypyrrole. Adv. Mater. 18, 577.

    CAS  Google Scholar 

  80. Pyo, M., Maeder, G., Kennedy, R. T., Reynolds, J. R. (1994) Controlled release of biological molecules from conducting polymer modified electrodes. The potential dependent release of adenosine 5′-triphosphate from poly(pyrrole adenosine 5′-triphosphate) films. J. Electroanal. Chem. 368, 329.

    CAS  Google Scholar 

  81. Miller, L. L., Zhou, Q. X. (1987) Poly(N-methylpyrrolylium) poly(styrenesulfonate) - a conductive, electrically switchable cation exchanger that cathodically binds and anodically releases dopamine. Macromolecules 20, 1594–1597.

    CAS  Google Scholar 

  82. Wong, J. Y., Langer, R., Ingber, D. E. (1994) Electrically conducting polymers can noninvasively control theshape and growth of mammalian cells. Proc. Natl. Acad. Sci. USA. 91, 3201.

    CAS  Google Scholar 

  83. Schmidt, C.E., Shastri, V. R., Vacanti, J. P., Langer, R. (1997) Stimulation of neurite outgrowth using an electrically conducting polymer. Proc. Natl. Acad. Sci. USA. 94, 8948–8953.

    CAS  Google Scholar 

  84. Higuchi, A., Hamamura, A., Shindo, Y., Kitamura, H., Yoon, B. O., Mori, T., Uyama T., Umezawa, A. (2004) Photon-Modulated Changes of Cell Attachments on Poly(spiropyran-co-methyl methacrylate) Membranes. Biomacromolecules 5, 1770.

    CAS  Google Scholar 

  85. Edahiro, J., Sumaru, K., Tada, Y., Ohi, K., Takagi, T., Kameda, M., Shinbo, T., Kanamori T., Yoshimi, Y. (2005) In Situ Control of Cell Adhesion Using Photoresponsive Culture Surface. Biomacromolecules 6, 970–974.

    CAS  Google Scholar 

  86. Hayashi, G., Hagihara, M., Dohno, C., Nakatani, K. (2007) Photoregulation of a Peptide  −  RNA Interaction on a Gold Surface. J. Am. Chem. Soc. 129, 8678–8679.

    CAS  Google Scholar 

  87. Ulijn R. V. (2006) Enzyme-responsive materials: a new class of smart biomaterials. J. Mater. Chem. 16, 2217–2225.

    CAS  Google Scholar 

  88. Todd, S. J., Farrar, D., Gough, J. E., Ulijn R. V. (2007) Enzyme-Triggered Cell Attachment to Hydrogel Surfaces. Soft Matter 3, 547–550.

    CAS  Google Scholar 

  89. Okajima, S., Sakai, Y., Yamaguchi, T. (2005) Development of a regenerable cell culture system that senses and releases dead cells. Langmuir 21, 4043–4049.

    CAS  Google Scholar 

  90. Milner, S. T. (1991) Polymer Brushes. Science 251, 905.

    CAS  Google Scholar 

  91. Barbey, R., Lavanant, L., Paripovic, D., Schüwer, N., Sugnaux, C., Tugulu, S., Klok H.-A. (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem. Rev. 109, 5437–5527.

    CAS  Google Scholar 

  92. Navarro, M., Benetti, E. M., Zapotoczny, S., Planell J. A., Vancso, G. J. (2008) Buried, Covalently Attached RGD Peptide Motifs in Poly(methacrylic acid) Brush Layers: The Effect of Brush Structure on Cell Adhesion. Langmuir 24, 10996–11002.

    CAS  Google Scholar 

  93. Tanahashi, T., Kawaguchi, M., Honda, T., Takahashi, A. (1994) Adsorption of poly(N-isopropylacrylamide) on silica surfaces. Macromolecules 27, 606–607.

    CAS  Google Scholar 

  94. Cho, E. C., Kim, Y. D., Cho, K. (2004) Thermally responsive poly(N-isopropylacrylamide) monolayer on gold: synthesis, surface characterization, and protein interaction/adsorption studies. Polymer 45, 3195–3204.

    CAS  Google Scholar 

  95. Zhao, B., Brittain, W. J. (2000) Polymer brushes: surface-immobilized macromolecules. Prog. Polym. Sci. 25, 677–710.

    CAS  Google Scholar 

  96. Edmondson, S., Osborne, V.L., Huck, W. T. S. (2004) Polymer brushes via surface-initiated polymerizationsChem. Soc. Rev. 33, 1422.

    CAS  Google Scholar 

  97. Jordan, R. (2006) Surface-Initiated Polymer­ization. Springer-Verlag, New York, 1st edn.

    Google Scholar 

  98. Jones, D. M., Smith, J. R., Huck, W. T. S., Alexander, C. (2002) Variable Adhesion of Micropatterned Thermoresponsive Polymer Brushes: AFM Investigations of Poly(N-isopropylacrylamide) Brushes Prepared by Surface-Initiated Polymerizations. Adv. Mater. 14, 1130–1134.

    CAS  Google Scholar 

  99. Benetti, E. M., Zapotoczny, S., Vancso, G. J. (2007) Tunable thermoresponsive polymeric platforms on gold by photoiniferter-based surface grafting. Adv. Mater. 19, 268–271.

    CAS  Google Scholar 

  100. Zapotoczny, S., Benetti, E. M., Vancso, G. J. (2007) Preparation and characterization of macromolecular “hedge” brushes grafted from Au nanowires. J. Mater. Chem. 17, 3293–3296.

    CAS  Google Scholar 

  101. Benetti, E. M., Chung, H. J., Vancso, G. J. (2009) pH Responsive Polymeric Brush Nanostructures: Preparation and Characterization by Scanning Probe Oxidation and Surface Initiated Polymerization. Macromol. Rapid Commun. 30, 411–417.

    CAS  Google Scholar 

  102. Advincula, R. C., Brittain, W. J., Caster, K.C., Rühe, J., (2004) Polymer Brushes: Synthesis, Characterization, Applications. Wiley-VCH Verlag GmbH &Co. KGaA: Weinheim, Germany.

    Google Scholar 

  103. Luzinov, I., Minko, S., Tsukruk, V.V. (2004) Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. Progr. Polym. Sci. (Oxford) 29, 635–698.

    CAS  Google Scholar 

  104. Raviv, U., Giasson, S., Kampf, N., Gohy, J.-F., Jérôme, R., Klein, J. (2003) Lubrication by charged polymers. Nature 425, 163–165.

    CAS  Google Scholar 

  105. Chen, M., Briscoe, W. H., Armes, S. P., Klein, J. (2009) Lubrication at Physiological Pressures by Polyzwitterionic Brushes. Science 323, 1698–1701.

    CAS  Google Scholar 

  106. Kaholek, M., Lee, W., Ahn, S., Ma, H., Caster, K. C., LaMattina, B., Zauscher, S. (2004) Stimulus-responsive poly(N-isopropylacrylamide) brushes and nanopatterns prepared by surface-initiated polymerization. Chem. Mater. 16, 3688–3696.

    CAS  Google Scholar 

  107. Tugulu, S., Silacci, P., Stergiopulos, N., Klok, H. A. (2007) RGD–functionalized polymer brushes as substrates for the integrin specific adhesion of human umbilical vein endothelial cells. Biomaterials 28, 2536–2546.

    CAS  Google Scholar 

  108. Arifuzzaman, S., Özçam, A. E., Efimenko, K., Fischer, D. A., Genzer, J. (2009) Formation of surface-grafted polymeric amphiphilic coatings comprising ethylene glycol and fluorinated groups and their response to protein adsorption. Biointerphases 4, FA33–FA44.

    Google Scholar 

  109. Ryan, A. J., Crook, C. J., Howse, J. R., Topham, P., Geoghegan, M., Martin, S. J., Parnell, A. J., Ruiz-Perez, L. and Jones, R. A. L. (2005) Mechanical actuation by responsive polyelectrolyte brushes and triblock gels. J. Macromol. Sci. Phys. B44, 1103–1121.

    Google Scholar 

  110. Ryan, A. J., Crook, C. J., Howse, J. R., Topham, P., Jones, R. A. L., Geoghegan, M., Parnell, A. J., Ruiz-Perez, L., Martin, S. J., Cadby, A., Menelle, A., Webster, J. R. P., Gleeson, A. J. and Bras, W. (2005) Responsive brushes and gels as components of soft nanotechnology. Faraday Discuss. 128, 55–74.

    CAS  Google Scholar 

  111. Ionov, L., Houbenov, N., Sidorenko, A., Stamm, M. and Minko, S. (2006) Smart microfluidic channels. Adv. Funct. Mater. 16, 1153–1160.

    CAS  Google Scholar 

  112. Huber, D.; Manginell, R.; Samara, M.; Kim, B.-I.; Bunker, B. C. (2003) Programmed adsorption and release of proteins in a microfluidic device. Science 301, 352–354.

    CAS  Google Scholar 

  113. Ebara, M., Yamato, M., Aoyagi, T., Kikuchi, A., Sakai, K., Okano, T. (2004) Temperature-Responsive Cell Culture Surfaces Enable “On  −  Off” Affinity Control between Cell Integrins and RGDS Ligands Biomacro­molecules 5, 505.

    CAS  Google Scholar 

  114. Cunliffe, D., Alarcon, C. D., Peters, V., Smith, J. R., Alexander, C. (2003) Thermoresponsive Surface-Grafted Poly(N-isopropylacrylamide) Copolymers: Effect of Phase Transitions on Protein and Bacterial Attachment. Langmuir 19, 2888–2899.

    CAS  Google Scholar 

  115. Huber, D. L., Manginell, R. P., Samara, M. A., Kim B. I., Bunker, B. C. (2003) Programmed Adsorption and Release of Proteins in a Microfluidic Device. Science 301, 352.

    CAS  Google Scholar 

  116. Nagel, B., Warsinke, A., Katterle, M. (2007) Enzyme Activity Control by Responsive Redox Polymers. Langmuir 23, 6807–6811.

    CAS  Google Scholar 

  117. de las Heras Alarcón, C., Farhan, T., Osborne, V. L., Huck, W. T. S., Alexander, C. (2005) Bioadhesion at micro-patterned stimuli-responsive polymer brushes. J. Mat. Chem. 15, 2089.

    Google Scholar 

  118. Frey, W., Meyer, D. E., Chilkoti, A. (2003) Thermodynamically Reversible Addressing of a Stimuli Responsive Fusion Protein onto a Patterned Surface Template. Langmuir 19, 1641–1653.

    CAS  Google Scholar 

  119. Koga, T., Nagaoka, A., Higashi, N. (2006) Fabrication of a Switchable Nano-surface Composed of Acidic and Basic Block Polypeptides. Colloids Surf. A 284, 521–527.

    Google Scholar 

  120. Israels, R.; Gersappe, D.; Fasolka, M.; Roberts, V. A.; Balazs, A. C. (1994) pH-Controlled Gating in Polymer Brushes. Macromolecules 27, 6679–6682.

    CAS  Google Scholar 

  121. Mei, Y.; Wu, T.; Xu, C.; Langenbach, K. J.; Elliott, J. T.; Vogt, B. D.; Beers, K. L.; Amis, E. J.; Washburn, N. R. (2005) Tuning Cell Adhesion on Gradient Poly(2-hydroxyethyl methacrylate)-Grafted Surfaces. Langmuir 21, 12309–12314.

    CAS  Google Scholar 

  122. Harris, B. P., Kutty, J. K., Fritz, E. W., Webb, C. K., Burg, K. J. L., Metters, A. T. (2006) Photopatterned Polymer Brushes Promoting Cell Adhesion Gradients. Langmuir 22, 4467–4471.

    CAS  Google Scholar 

  123. Zhu, Y. B., Gao, C. Y., Guan, J. J., Shen, J. C. (2003) Engineering porous polyurethane scaffolds by photografting polymerization of methacrylic acid for improved endothelial cell compatibility. J. Biomed. Mater. Res. A 67A, 1367–1373.

    CAS  Google Scholar 

  124. Anikin, K., Röcker, C., Wittemann, A., Wiedenmann, J., Ballauff, M., Nienhaus, G. U. (2005) Polyelectrolyte-Mediated Protein Adsorption: Fluorescent Protein Binding to Individual Polyelectrolyte Nanospheres. J. Phys. Chem. B 109, 5418.

    CAS  Google Scholar 

  125. Wittemann, A., Haupt, B., Ballauff, M. (2003) Adsorption of proteins on spherical polyelectrolyte brushes in aqueous solution. Phys. Chem. Chem. Phys. 5, 1671–1677.

    CAS  Google Scholar 

  126. Pearson, D., Downard, A. J., Muscroft-Taylor, A., Abell, A. D. (2007) Reversible Photoregulation of Binding of α-Chymotrypsin to a Gold Surface. J. Am. Chem. Soc. 129, 14862–14863.

    CAS  Google Scholar 

  127. Otsu, T., Matsumoto, A. (1998) Controlled Synthesis of Polymers Using the Iniferter Technique: Developments in Living Radical Polymerization. Adv. Polym. Sci. 136, 75.

    CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges the financial support from the project operated within the Foundation for Polish Science Team Programme cofinanced by the EU European Regional Development Fund, PolyMed, TEAM/2008-2/6. Dr. Edmondo M. Benetti (ETH Zürich) is kindly acknowledged for his comments to the protocol part.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szczepan Zapotoczny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zapotoczny, S. (2012). Stimuli Responsive Polymers for Nanoengineering of Biointerfaces. In: Navarro, M., Planell, J. (eds) Nanotechnology in Regenerative Medicine. Methods in Molecular Biology, vol 811. Humana Press. https://doi.org/10.1007/978-1-61779-388-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-388-2_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-387-5

  • Online ISBN: 978-1-61779-388-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics