Skip to main content

Antigen Identification Starting from the Genome: A “Reverse Vaccinology” Approach Applied to MenB

  • Protocol
  • First Online:
Neisseria meningitidis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 799))

Abstract

Most of the vaccines available today, albeit very effective, have been developed using traditional “old-style” methodologies. Technologies developed in recent years have opened up new perspectives in the field of vaccinology and novel strategies are now being used to design improved or new vaccines against infections for which preventive measures do not exist. The Reverse Vaccinology (RV) approach is one of the most powerful examples of biotechnology applied to the field of vaccinology for identifying new protein-based vaccines. RV combines the availability of genomic data, the analyzing capabilities of new bioinformatic tools, and the application of high throughput expression and purification systems combined with serological screening assays for a coordinated screening process of the entire genomic repertoire of bacterial, viral, or parasitic pathogens. The application of RV to Neisseria meningitidis serogroup B represents the first success of this novel approach. In this chapter, we describe how this revolutionary approach can be easily applied to any pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keating GM, Noble S (2003) Recombinant hepatitis B vaccine (Engerix-B (R)) - A review of its immunogenicity and protective efficacy against hepatitis B. Drugs 63: 1021–1051.

    Article  CAS  Google Scholar 

  2. Cutts FT, Franceschi S, Goldie S et al (2007) Human papillomavirus and HPV vaccines: a review. Bull World Health Org 85: 719–726.

    Article  CAS  Google Scholar 

  3. Pizza M, Covacci A, Bartoloni A et al (1989) Mutants of pertussis toxin suitable for vaccine development. Science 246: 497–500.

    Article  CAS  Google Scholar 

  4. Stephens DS (2007) Conquering the meningococcus. Fems Micro Rev 31: 3–14.

    Article  CAS  Google Scholar 

  5. Riordan A (2010) The implications of vaccines for prevention of bacterial meningitis. Curr Opin Neurol 23: 319–324.

    Article  CAS  Google Scholar 

  6. Pizza M, Scarlato V, Masignani V et al (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287: 1816–1820.

    Article  CAS  Google Scholar 

  7. Plotkin SA (2008) Correlates of vaccine-induced immunity. Clin Infect Dis 47: 401–409.

    Article  Google Scholar 

  8. Medini D, Serruto D, Parkhill J et al (2008) Microbiology in the post-genomic era. Nature Rev Microbiol 6: 419–430.

    Article  CAS  Google Scholar 

  9. Margarit I, Rinaudo CD, Galeotti CL et al (2009) Preventing bacterial infections with pilus-based vaccines: the Group B Streptococcus paradigm. J Infect Dis 199: 108–115.

    Article  Google Scholar 

  10. Bagnoli F, Baudner B, Mishra R et al (2011) Designing the next generation of vaccines for global public health. OMICS: J Integrat Biol 17. [Epub ahead of print].

    Google Scholar 

  11. Scarselli M, Aricò B, Brunelli B et al (2011) Rational design of a meningococcal antigen inducing broad protective immunity. Sci Transl Med 3(91): 91–62.

    Article  Google Scholar 

  12. Capecchi B, Adu-Bobie J, Di Marcello F et al (2005) Neisseria meningitidis NadA is a new invasin which promotes bacterial adhesion to and penetration into human epithelial cells. Mol Microbiol 55: 687–698.

    Article  CAS  Google Scholar 

  13. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. CSHL Press

    Google Scholar 

  14. Coligan JE, Dunn BM, Ploegh HL et al (2002) Curr Prot Prot Sci 1: 6.0.1–6.0.4.

    Google Scholar 

  15. Scopes RK (1994) Protein purification: principles and practices. Springer, New York.

    Book  Google Scholar 

  16. Hopkins TR (1991) Physical and chemical cell disruption for the recovery of intracellular proteins, in: Seetharam R, Sharma SK (Eds.), Purification and analysis of recombinant proteins, Marcel Dekker, New York, pp. 57–83.

    Google Scholar 

  17. Bornhorst JA, Falke JJ (2000) Purification of proteins using polyhistidine affinity tags. Methods Enzymol 326: 245–254.

    Article  CAS  Google Scholar 

  18. Kneusel RE, Crowe J, Wulbeck M, Ribbe J (2000) Procedures for the analysis and purification of His-tagged proteins, in: Rapley R (Ed.), The Nucleic Acid Protocols Handbook, Springer, pp. 921–934.

    Google Scholar 

  19. Feavers I, Walker B (2010) Functional Antibody Assays. Meth Molec Biol 626: 199–211.

    Article  CAS  Google Scholar 

  20. Giuliani MM, du-Bobie J, Comanducci M et al (2006) A universal vaccine for serogroup B meningococcus. Proc Nat Acad Sci USA 103: 10834–10839.

    Article  CAS  Google Scholar 

  21. Qin L, Gilbert PB, Corey L et al (2007) A framework for assessing immunological correlates of protection in vaccine trials. J Infect Dis 196: 1304–1312.

    Article  Google Scholar 

  22. Welsch JA, Moe GR, Rossi R et al (2003) Antibody to genome-derived neisserial antigen 2132, a Neisseria meningitidis candidate vaccine, confers protection against bacteremia in the absence of complement-mediated bactericidal activity. J Infect Dis 188: 1730–1740.

    Article  CAS  Google Scholar 

  23. Tjalsma H, Bolhuis A, Jongbloed JDH et al (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64: 515–547.

    Article  CAS  Google Scholar 

  24. Tjalsma H, Antelmann H, Jongbloed JDH et al (2004) Proteomics of protein secretion by Bacillus subtilis: Separating the “secrets” of the secretome. Microbiol Mol Biol Rev 68: 207–233.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to both Giorgio Corsi and Alessandro Aronica for artwork, Timothy Trevor Perkins and Jeannette Adu-Bobie for critical reading and manuscript editing, Enrico Luzzi and Francesca Ferlicca for their precious help in describing the ELISA and in vivo passive antibody protection methods and Beatrice Aricò, Maurizio Comanducci and Sara Comandi for their contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuelle Palumbo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Palumbo, E., Fiaschi, L., Brunelli, B., Marchi, S., Savino, S., Pizza, M. (2012). Antigen Identification Starting from the Genome: A “Reverse Vaccinology” Approach Applied to MenB. In: Christodoulides, M. (eds) Neisseria meningitidis. Methods in Molecular Biology, vol 799. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-61779-346-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-346-2_21

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-61779-345-5

  • Online ISBN: 978-1-61779-346-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics