Skip to main content

Characterization of Amyloid Deposits in Neurodegenerative Diseases

  • Protocol
  • First Online:
Neurodegeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 793))

Abstract

The extracellular accumulation of insoluble fibrillar peptides in brain parenchyma and vessel walls as amyloid is the hallmark of neurodegenerative diseases, such as Alzheimer’s disease and Prion diseases. Regardless their amino acid sequences, all amyloid peptides adopt an insoluble, highly ordered beta sheet structure when aggregated. Amyloid is homogeneous and eosinophilic and, common to most cross-beta-type structures; it is generally identified by apple-green birefringence when stained with Congo red and seen under polarized light. Amyloid can also be identified by an apple green color when stained with thioflavine-S and seen under a fluorescence microscope. By electron microscopy, the typical fibrillar ultrastructure of amyloid deposits is revealed. The biochemical nature of the amyloid subunits present in the deposits can be recognized by immunohistochemistry using specific antibodies or by amino acid sequencing analysis, western blot, and mass spectrometry after isolation of parenchymal or vascular amyloid proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pepys, M.B. (2006) Amyloidosis. Annu. Rev. Med. 57, 223–241.

    Article  PubMed  CAS  Google Scholar 

  2. Prelli, F., Castaño, E.M., Glenner, G.G., and Frangione, B. (1988) Differences between vascular and plaque core amyloid in Alzheimer’s disease, J. Neurochem. 51, 648–651.

    Article  PubMed  CAS  Google Scholar 

  3. Vidal, R., Calero, M., Piccardo, P., Farlow, M.R., Unverzagt, F.W., Mendez, E., Jimenez-Huete, A., Beavis, R., Gallo, G., Gomez-Tortosa, E., Ghiso, J., Hyman, B.T., Frangione, B., and Ghetti, B. (2000) Senile dementia associated with amyloid beta protein angiopathy and tau perivascular pathology but not neuritic plaques in patients homozygous for the APOE-epsilon4 allele, Acta Neuropathol. (Berl.) 100, 1–12.

    Google Scholar 

  4. Vidal, R., Ghiso, J., and Frangione, B. (2000) New familial forms of cerebral amyloid and dementia. Mol Psychiatry. 5(6), 575–576.

    Article  PubMed  CAS  Google Scholar 

  5. Ghetti, B., Tagliavini, F., Masters, C.L., Beyreuther, K., Giaccone, G.,Verga, L., Farlow, M.R., Conneally, P.M., Dlouhy, S.R., Azzarelli, B., and Bugiani, O. (1989) Gerstmann-Sträussler-Scheinker disease. II. Neurofibrillary tangles and plaques with PrP-amyloid coexist in an affected family. Neurology 39,1453–1461.

    Google Scholar 

  6. Vidal, R., Frangione, B., Rostagno, A., Mead, S., Revesz, T., Plant, G., and Ghiso, J. (1999) A stop-codon mutation in the BRI gene associated with familial British dementia. Nature 399, 776–781.

    Article  PubMed  CAS  Google Scholar 

  7. Vidal, R., Revesz, T., Rostagno, A., Kim, E., Holton, J.L., Bek, T., Bojsen-Moller, M., Braendgaard, H., Plant, G., Ghiso, J., and Frangione, B. (2000) A decamer duplication in the 3’ region of the BRI gene originates an amyloid peptide that is associated with dementia in a Danish kindred. Proc Natl Acad Sci USA 97, 4920–4925.

    Article  PubMed  CAS  Google Scholar 

  8. Vidal, R., Ghiso, J., and Frangione, B. (2000) New familial forms of cerebral amyloid and dementia. Mol Psychiatry 5, 575–576.

    Article  PubMed  CAS  Google Scholar 

  9. Vidal, R., Delisle, M.B., and Ghetti, B. (2004) Neurodegeneration caused by proteins with an aberrant carboxyl-terminus. J Neuropathol Exp Neurol 63, 787–800.

    PubMed  CAS  Google Scholar 

  10. Vidal, R., Garzuly, F., Budka, H., Lalowski, M., Linke, R.P., Brittig, F., Frangione, B., and Wisniewski, T. (1996) Meningocerebrovascular amyloidosis associated with a novel transthyretin mis-sense mutation at codon 18 (TTRD 18G) Am J Pathol. 148, 361–366.

    Google Scholar 

  11. Vidal, R.G., Ghiso, J., Gallo, G., Cohen, M., Gambetti, P.L., and Frangione, B. (1992) Amyloidoma of the CNS. II. Immunohistochemical and biochemical study. Neurology. 42, 2024–2028.

    Google Scholar 

  12. Westermark, P., Benson, M.D., Buxbaum, J.N., Cohen, A.S., Frangione, B., Ikeda, S., Masters, C.L., Merlini, G., Saraiva, M.J., and Sipe, J.D. (2007) A primer of amyloid nomenclature. Amyloid. 14, 179–183.

    Article  PubMed  CAS  Google Scholar 

  13. Westermark, G.T., Johnson, K.H., and Westermark, P. (1999) Staining methods for identification of amyloid in tissue. Methods Enzymol. 309, 3–25.

    Article  PubMed  CAS  Google Scholar 

  14. Roher, A.E., and Kuo, Y.M. (1999) Isolation of amyloid deposits from brain. Methods Enzymol. 309, 58–67.

    Article  PubMed  CAS  Google Scholar 

  15. Miravalle, L., Calero, M., Takao, M., Roher, A.E., Ghetti, B., and Vidal, R. (2005) Amino-terminally truncated Aβ peptide species are the main component of cotton wool plaques. Biochemistry. 44, 10810–10821.

    Article  PubMed  CAS  Google Scholar 

  16. Liao, L., Cheng, D., Wang, J., Duong, D.M., Losik, T.G., Gearing, M., Rees, H.D., Lah, J.J., Levey, A.I., and Peng, J. (2004) Proteomic characterization of postmortem amyloid plaques isolated by laser capture microdissection. J Biol Chem. 279, 37061–37068.

    Article  PubMed  CAS  Google Scholar 

  17. Wittliff, J.L.,and Erlander, M.G. (2002) Laser capture microdissection and its applications in genomics and proteomics. Methods Enzymol.356, 12–25.

    Article  PubMed  CAS  Google Scholar 

  18. Cornea, A., Mungenast, A. (2002) Comparison of current equipment. Methods Enzymol. 356, 3–12.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to all participants and their families who through their commitment make these studies possible. The authors are grateful to F. Epperson, B. Dupree, and R. Richardson for their technical assistance. This study was supported by grants from the National Institute of Health (NS050227, NS063056, AG10133), the Alzheimer’s association (IIRG-05-14220), and by the American Health Assistance Foundation (A2008-304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Vidal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Vidal, R., Ghetti, B. (2011). Characterization of Amyloid Deposits in Neurodegenerative Diseases. In: Manfredi, G., Kawamata, H. (eds) Neurodegeneration. Methods in Molecular Biology, vol 793. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-328-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-328-8_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-327-1

  • Online ISBN: 978-1-61779-328-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics