Skip to main content

Closed-Tube PCR Methods for Locus-Specific DNA Methylation Analysis

  • Protocol
  • First Online:
Epigenetics Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 791))

Abstract

Closed-tube PCR methods (sometimes referred to as in-tube PCR methods) for locus-specific DNA ­methylation analysis are methodologies in which the amplification and analysis of bisulphite-modified DNA take place in one tube without the need to remove the PCR products for further analysis. Closed-tube methodologies lend themselves to high-throughput applications and molecular diagnostics but are also applicable as a research tool. We review three closed-tube methodologies, methylation-sensitive high-resolution melting (MS-HRM), MethyLight, and sensitive melting after real-time analysis – methylation-specific PCR (SMART-MSP). Closed-tube detection can be performed by simultaneously amplifying both methylated and unmethylated templates and subsequent melting curve analysis (MS-HRM). Alternatively, methylation-specific primers are used in real-time quantitative PCR and monitored either by a fluorescent hydrolysis probe (MethyLight) or using a double-stranded DNA binding fluorescent dye with a subsequent quality control step by melting curve analysis (SMART-MSP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dobrovic, A. (2005) in Molecular diagnostics for the clinical laboratorian (Coleman, W. B., and Tsongalis, G. J., Eds.), pp 149–160, Humana Press, Totowa, NJ.

    Google Scholar 

  2. Frommer, M., McDonald, L. E., Millar, D. S., Collis, C. M., Watt, F., Grigg, G. W., Molloy, P. L., and Paul, C. L. (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands, Proceedings of the National Academy of Sciences of the United States of America 89; 1827–1831.

    Article  PubMed  CAS  Google Scholar 

  3. Wojdacz, T. K., and Dobrovic, A. (2007) Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation, Nucleic acids research 35; e41.

    Article  PubMed  Google Scholar 

  4. Eads, C. A., Danenberg, K. D., Kawakami, K., Saltz, L. B., Blake, C., Shibata, D., Danenberg, P. V., and Laird, P. W. (2000) MethyLight: a high-throughput assay to measure DNA methylation, Nucleic acids research 28; e32.

    Article  PubMed  CAS  Google Scholar 

  5. Kristensen, L. S., Mikeska, T., Krypuy, M., and Dobrovic, A. (2008) Sensitive Melting Analysis after Real Time- Methylation Specific PCR (SMART-MSP): high-throughput and probe-free quantitative DNA methylation detection, Nucleic acids research 36; e42.

    Article  PubMed  Google Scholar 

  6. Ririe, K. M., Rasmussen, R. P., and Wittwer, C. T. (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction, Analytical biochemistry 245; 154–160.

    Article  PubMed  CAS  Google Scholar 

  7. Worm, J., Aggerholm, A., and Guldberg, P. (2001) In-tube DNA methylation profiling by fluorescence melting curve analysis, Clinical chemistry 47; 1183–1189.

    PubMed  CAS  Google Scholar 

  8. Alders, M., Bliek, J., vd Lip, K., vd Bogaard, R., and Mannens, M. (2009) Determination of KCNQ1OT1 and H19 methylation levels in BWS and SRS patients using methylation-sensitive high-resolution melting analysis, European Journal of Human Genetics 17; 467–473.

    Google Scholar 

  9. Wojdacz, T. K., Dobrovic, A., and Algar, E. M. (2008) Rapid detection of methylation change at H19 in human imprinting disorders using methylation-sensitive high-resolution melting, Human mutation 29; 1255–1260.

    Article  PubMed  CAS  Google Scholar 

  10. White, H. E., Hall, V. J., and Cross, N. C. (2007) Methylation-sensitive high-resolution melting-curve analysis of the SNRPN gene as a diagnostic screen for Prader-Willi and Angelman syndromes, Clinical chemistry 53; 1960–1962.

    Article  PubMed  CAS  Google Scholar 

  11. Candiloro, I. L., Mikeska, T., Hokland, P., and Dobrovic, A. (2008) Rapid analysis of heterogeneously methylated DNA using digital methylation-sensitive high resolution melting: application to the CDKN2B (p15) gene, Epigenetics & chromatin 1; 7.

    Article  Google Scholar 

  12. Snell, C., Krypuy, M., Wong, E. M., Loughrey, M. B., and Dobrovic, A. (2008) BRCA1 promoter methylation in peripheral blood DNA of mutation negative familial breast cancer patients with a BRCA1 tumour phenotype, Breast Cancer Research 10; R12.

    Article  PubMed  Google Scholar 

  13. Wojdacz, T. K., and Hansen, L. L. (2006) Reversal of PCR bias for improved sensitivity of the DNA methylation melting curve assay, BioTechniques 41; 274, 276, 278.

    Google Scholar 

  14. Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D., and Baylin, S. B. (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands, Proceedings of the National Academy of Sciences of the United States of America 93; 9821–9826.

    Article  PubMed  CAS  Google Scholar 

  15. Lo, Y. M., Wong, I. H., Zhang, J., Tein, M. S., Ng, M. H., and Hjelm, N. M. (1999) Quantitative analysis of aberrant p16 methylation using real-time quantitative methylation-specific polymerase chain reaction, Cancer research 59; 3899–3903.

    PubMed  CAS  Google Scholar 

  16. Preusser, M., Elezi, L., and Hainfellner, J. A. (2008) Reliability and reproducibility of PCR-based testing of O6-methylguanine-DNA methyltransferase gene (MGMT) promoter methylation status in formalin-fixed and paraffin-embedded neurosurgical biopsy specimens, Clinical neuropathology 27; 388–390.

    PubMed  CAS  Google Scholar 

  17. Chan, M. W., Chu, E. S., To, K. F., and Leung, W. K. (2004) Quantitative detection of methylated SOCS-1, a tumor suppressor gene, by a modified protocol of quantitative real time methylation-specific PCR using SYBR green and its use in early gastric cancer detection, Biotechnology letters 26; 1289–1293.

    Article  PubMed  CAS  Google Scholar 

  18. Candiloro, I. L., and Dobrovic, A. (2009) Detection of MGMT promoter methylation in normal individuals is strongly associated with the T allele of the rs16906252 MGMT promoter single nucleotide polymorphism, Cancer prevention research (Philadelphia, Pa) 2; 862–867.

    Google Scholar 

  19. Wittwer, C. T., Reed, G. H., Gundry, C. N., Vandersteen, J. G., and Pryor, R. J. (2003) High-resolution genotyping by amplicon melting analysis using LCGreen, Clinical chemistry 49; 853–860.

    Article  PubMed  CAS  Google Scholar 

  20. Mikeska, T., Candiloro, I. L. M., and Dobrovic, A. (2010) The implications of heterogeneous DNA methylation for the accurate quantification of methylation, Epigenenomics 2; 561–573.

    Article  CAS  Google Scholar 

  21. Schuffler, P., Mikeska, T., Waha, A., Lengauer, T., and Bock, C. (2009) MethMarker: ­user-friendly design and optimization of gene-specific DNA methylation assays, Genome biology 10; R105.

    Article  PubMed  Google Scholar 

  22. Kibbe, W. A. (2007) OligoCalc: an online oligonucleotide properties calculator, Nucleic acids research 35; W43–46.

    Article  PubMed  Google Scholar 

  23. Brandes, J. C., Carraway, H., and Herman, J. G. (2007) Optimal primer design using the novel primer design program: MSPprimer provides accurate methylation analysis of the ATM promoter, Oncogene 26; 6229–6237.

    Article  PubMed  CAS  Google Scholar 

  24. Poland, D. (1974) Recursion relation generation of probability profiles for specific-sequence macromolecules with long-range correlations, Biopolymers 13; 1859–1871.

    Article  PubMed  CAS  Google Scholar 

  25. Steger, G. (1994) Thermal denaturation of double-stranded nucleic acids: prediction of temperatures critical for gradient gel electrophoresis and polymerase chain reaction, Nucleic acids research 22; 2760–2768.

    Article  PubMed  CAS  Google Scholar 

  26. Wojdacz, T. K., Hansen, L. L., and Dobrovic, A. (2008) A new approach to primer design for the control of PCR bias in methylation studies, BMC research notes 1; 54.

    Article  PubMed  Google Scholar 

  27. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular cloning: a laboratory manual, 2nd ed., Cold Sprinh Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  28. Warnecke, P. M., Stirzaker, C., Song, J., Grunau, C., Melki, J. R., and Clark, S. J. (2002) Identification and resolution of artifacts in bisulfite sequencing, Methods (San Diego, Calif 27; 101–107.

    Google Scholar 

  29. Bookstein, R., Lai, C. C., To, H., and Lee, W. H. (1990) PCR-based detection of a polymorphic BamHI site in intron 1 of the human retinoblastoma (RB) gene, Nucleic acids research 18; 1666.

    Article  PubMed  CAS  Google Scholar 

  30. Henke, W., Herdel, K., Jung, K., Schnorr, D., and Loening, S. A. (1997) Betaine improves the PCR amplification of GC-rich DNA sequences, Nucleic acids research 25; 3957–3958.

    Article  PubMed  CAS  Google Scholar 

  31. Baskaran, N., Kandpal, R. P., Bhargava, A. K., Glynn, M. W., Bale, A., and Weissman, S. M. (1996) Uniform amplification of a mixture of deoxyribonucleic acids with varying GC content, Genome research 6; 633–638.

    Article  PubMed  CAS  Google Scholar 

  32. Sarkar, G., Kapelner, S., and Sommer, S. S. (1990) Formamide can dramatically improve the specificity of PCR, Nucleic acids research 18; 7465.

    Article  PubMed  CAS  Google Scholar 

  33. Tanaka, K., and Okamoto, A. (2007) Degradation of DNA by bisulfite treatment, Bioorganic & medicinal chemistry letters 17; 1912–1915.

    Article  CAS  Google Scholar 

  34. Eads, C. A., Lord, R. V., Wickramasinghe, K., Long, T. I., Kurumboor, S. K., Bernstein, L., Peters, J. H., DeMeester, S. R., DeMeester, T. R., Skinner, K. A., and Laird, P. W. (2001) Epigenetic patterns in the progression of esophageal adenocarcinoma, Cancer research 61; 3410–3418.

    PubMed  CAS  Google Scholar 

  35. Livak, K. J., and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method, Methods (San Diego, Calif 25; 402–408.

    Google Scholar 

  36. Pfaffl, M. W., Georgieva, T. M., Georgiev, I. P., Ontsouka, E., Hageleit, M., and Blum, J. W. (2002) Real-time RT-PCR quantification of insulin-like growth factor (IGF)-1, IGF-1 receptor, IGF-2, IGF-2 receptor, insulin receptor, growth hormone receptor, IGF-binding proteins 1, 2 and 3 in the bovine species, Domestic animal endocrinology 22; 91–102.

    Article  PubMed  CAS  Google Scholar 

  37. Lind, K., Stahlberg, A., Zoric, N., and Kubista, M. (2006) Combining sequence-specific probes and DNA binding dyes in real-time PCR for specific nucleic acid quantification and melting curve analysis, BioTechniques 40; 315–319.

    Article  PubMed  CAS  Google Scholar 

  38. Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., Shipley, G. L., Vandesompele, J., and Wittwer, C. T. (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments, Clinical chemistry 55; 611–622.

    Article  PubMed  CAS  Google Scholar 

  39. Lefever, S., Hellemans, J., Pattyn, F., Przybylski, D. R., Taylor, C., Geurts, R., Untergasser, A., and Vandesompele, J. (2009) RDML: structured language and reporting guidelines for real-time quantitative PCR data, Nucleic acids research 37; 2065–2069.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

AD has received grant support from the Cancer Council of Victoria, the National Breast Cancer Foundation of Australia, the Victorian Cancer Agency, the National Health and Medical Research Council of Australia, the Susan G. Komen for the Cure Foundation, and the US Department of Defence Breast Cancer Research Program under award numbers W81XWH-05-1-0500 and W81XWH-06-1-0670. Views and opinions of, and endorsements by the authors do not reflect those of the US Army or the Department of Defence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Dobrovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Candiloro, I.L.M., Mikeska, T., Dobrovic, A. (2011). Closed-Tube PCR Methods for Locus-Specific DNA Methylation Analysis. In: Tollefsbol, T. (eds) Epigenetics Protocols. Methods in Molecular Biology, vol 791. Humana Press. https://doi.org/10.1007/978-1-61779-316-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-316-5_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-315-8

  • Online ISBN: 978-1-61779-316-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics