Skip to main content

Sequential Chromatin Immunoprecipitation Assay and Analysis

  • Protocol
  • First Online:
Epigenetics Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 791))

Abstract

Sequential chromatin immunoprecipitation (SeqChIP) assays have been developed for the study of interactions of two or more proteins (or simultaneous histone modifications) at genomic sites. It is based on the principle that chromatin and associated proteins can be first immunoprecipitated with a first antibody and the obtained immunoprecipitate can be subjected to a second antibody. At the end of the assay the immunoprecipitated material contains only chromatin that concomitantly carries both DNA-associated proteins (or both histone modifications). The SeqChIP protocol described here combines speed (minimum of 3–4 h to perform the complete assay), sensitivity (known targets can be detected with only about 20,000 cell equivalents), and avoidance of antibody–antigen disruption after the first ChIP step. In addition, specific SeqChIP controls and potential shortcomings are discussed, the main characteristics of different SeqChIP protocols are described and several examples of protein complexes and protein–protein interactions at genomic sites that have been solved by SeqChIP in the recent years are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Narlikar, G.J., Fan, H.Y., and Kingston, R.E. (2002) Cooperation between complexes that regulate chromatin structure and transcription. Cell. 108: 475–487.

    Article  PubMed  CAS  Google Scholar 

  2. Kim, T.H. and Ren, B. (2006) Genome-wide analysis of protein-DNA interactions. Annu. Rev. Genomics Hum. Genet. 7: 81–102.

    Article  PubMed  Google Scholar 

  3. Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., and Cuff, J. (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 125: 315–326.

    Article  PubMed  CAS  Google Scholar 

  4. Azuara, V., Perry, P., Sauer, S., Spivakov, M., Jorgensen, H.F., and John, R.M. (2006) Chromatin signatures of pluripotent cell lines. Nat. Cell. Biol. 8: 532–538.

    Article  PubMed  CAS  Google Scholar 

  5. Jin, C., Zang, C., Wei, G., Cui, K., Peng, W., Zhao, K. and Rosenfeld, G. (2009) H3.3/H2A.Z double variant-containing nucleosomes mark ‘nucleosome-free regions’ of active promoters and other regulatory regions. Nat. Genet. 41: 941–945.

    Article  PubMed  CAS  Google Scholar 

  6. Scully, K.M., Jacobson, E.M., Jepsen, K., Lunyak, V., Viadiu, H., and Carriere, C. (2000) Allosteric effects of Pit1 DNA sites on long-term repression in cell type specification. Science. 290: 1127–1131.

    Article  PubMed  CAS  Google Scholar 

  7. Geisberg, J.V., and Struhl, K. (2004) Quantitative sequential chromatin immunoprecipitation, a method for analyzing co-occupancy of proteins at genomic regions in vivo. Nuc. Acids. Res. 32: e151.

    Article  Google Scholar 

  8. Furlan-Magaril, M., Rincon-Arano, H. and Recillas-Targa, F. (2009) Sequential chromatin immunoprecipitation protocol: ChIP-reChIP. In: Moss, T. and Leblanc, B. (Eds.) Methods in Molecular Biology, DNA-Protein Interactions, vol. 543, Humana Press, NJ.

    Google Scholar 

  9. Lee, T.I, Johnstone, S.E. and Young, R.A. (2006) Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat. Protocols. 1: 729–748.

    Article  CAS  Google Scholar 

  10. Collas, P. (2010) The current state of chromatin immunoprecipitation. Mol. Biotech. 45: 87–100.

    Article  CAS  Google Scholar 

  11. Geisberg, J.V., and Struhl, K. (2004) Cellular stress alters the transcriptional properties of promoter-bound Mot1-TBP complexes. Mol. Cell. 14: 479–489.

    Article  PubMed  CAS  Google Scholar 

  12. Thorne, A.W., Myers, F.A., and Hebbes, T.R. (2004) Native chromatin immunoprecipitation. Methods. Mol. Biol. 287: 21–44.

    PubMed  CAS  Google Scholar 

  13. Medeiros, R.B., Papenfuss, K.J., Hoium, B., Coley, K., Jadrich, J., Goh, S.K. et al. (2009) Novel sequential ChIP and simplified basic ChIP protocols for promoter co-occupancy and target gene identification in human embryonic stem cells. BMC Biotech. 9: 59.

    Article  Google Scholar 

  14. Kumar, P. and Pandey, K.N. (2010) Cooperative activation of Npr1 gene transciption and expression by interaction of Ets1 and p300. Hypertension. 54: 172–178.

    Article  Google Scholar 

  15. Cui, R., Nguyen, T.T., Taube, J.H., Stratton, S.A., Feuerman, M.H. and Barton, M.C. (2005) Family members p53 and p73 act together in chromatin modification and direct repression of α-fetoprotein transcription. Jour. Biol. Chem. 280: 39152–39160.

    Article  CAS  Google Scholar 

  16. Hatziz, P., and Talianidis, I. (2002) Dynamics of enhancer-promoter communication during differentiation-induced gene activation. Mol. Cell. 10: 1467–1477.

    Article  Google Scholar 

  17. Drobic, B., Perez-Cadahia, B., Yu, J., Kung, S.K.-P. and Davie, J.R. (2010) Promoter chromatin remodeling of immediate-early genes is mediated through H3 phosphorylation at either serine 28 or 10 by the MSK1 multi-protein complex. Nuc. Acids. Res. 113 (doi:10.1093/nar/gkq030).

  18. Ohtsuki, K., Kasahara, K., Shirahige, K. and Kokubo, T. (2010) Genome-wide localization analysis of a complete set of Tafs reveals a specific effect of the taf1 mutation on Taf2 occupancy and provides indirect evidence for different TFIID conformations at different promoters. Nuc. Acids Res. 38:1805–20.

    Article  CAS  Google Scholar 

  19. Chaya, D., Hayamizu, T., Bustin, M. and Zaret, K.S. (2001) Transcription factor FoxA (HNF3) on a nucleosome at an enhancer complex in liver chromatin. Jour. Biol. Chem. 276: 44385–44389.

    Article  CAS  Google Scholar 

  20. Proft, M., and Struhl, K. (2002) Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress. Mol. Cell. 9: 1307–1317.

    Article  PubMed  CAS  Google Scholar 

  21. Soutoglou, E., and Talianidis, I. (2002) Coordination of PIC assembly and chromatin remodeling during differentiation-induced gene activation. Science 295: 1901–1904.

    Article  PubMed  CAS  Google Scholar 

  22. Metivier, R., Penot, G., Hubner, M.R., Reid, G., Brand, H., Kos, M. and Gannon, F. (2003) Estrogen receptor-α directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell. 115: 751–763.

    Article  PubMed  CAS  Google Scholar 

  23. Kobrossy, L., Rastegar, M. and Featherstone, M. (2006) Interplay between chromatin and trans-acting factors regulating the hoxd4 promoter during neural differentiation. Jour. Biol. Chem. 281: 25926–25939.

    Article  CAS  Google Scholar 

  24. Jalvy, S., Renault, M.A., Lam Shang Leen, L., Belloc, I., Reynaud, A., Gadeau, A.P. and Desgranges, C. (2007) CREB mediates UTP-directed arterial smooth muscle cell migration and expression of the chemotactic protein osteopontin via its interaction with activator protein-1 sites. Circ. Res. 100: 1292–1299.

    Article  PubMed  CAS  Google Scholar 

  25. Brunelli, L., Cieslik, K.A., Alcorn, J.L., Vatta, M. and Baldini, A. (2007) Peroxisome proliferator-activated receptor-delta upregulates 14-3-3 epsilon in human endothelial cells via CCAAT/enhancer binding protein-beta. Circ. Res. 100: e59–71.

    Article  PubMed  CAS  Google Scholar 

  26. Wilkinson, D.S., Tsai, W.-W., Schumacher, M.A. and Barton, M.C. (2008) Chromatin-bound p53 anchors activated Smads and the mSin3A corepressor to confer transforming growth factor b-mediated transcription repression. Mol. Cell. Biol. 28: 1988–1998.

    Article  PubMed  CAS  Google Scholar 

  27. Egistelli, L., Chichiarelli, S., Gaucci, E., Eufemi, M., Schinina, M.E., and Giorgi, A. (2009) IFI16 and NM23 bind to a common DNA fragment both in th p53 and the cMyc gene promoters. Jour. Cell. Biochem. 106: 666–672.

    Article  CAS  Google Scholar 

  28. Wei, F., Zaprazna, K., Wang, J. and Atchison, M.L. (2009) PU.1 can recruit BCL6 to DNA to repress gene expression in germinal center B cells. Mol. Cell. Biol. 29: 4612–4622.

    Article  PubMed  CAS  Google Scholar 

  29. Papoutsi, Z., Zhao, C., Putnik, M., Gustafsson, J.-A. and Dahlman-Wright, K. (2009) Binding of estrogen receptor a/b heterodimers to chromatin in MCF-7 cells. Jour. Mol. Endocrinol. 43: 65–72.

    Article  CAS  Google Scholar 

  30. Maertens, G.N., El Messaoudi-Aubert, S., Racek, T., Stock, J.K., and Nicholls, J. (2009) Several distinct polycomb complexes regulate and co-localize on the INK4a tumor suppressor locus. PLoS ONE 4: e6380.

    Article  PubMed  Google Scholar 

  31. van Rechem, C., Boulay, G. and Leprince, D. (2009) HIC1 interacts with a specific subunit of SWI/SNF complexes, ARID1A/BAF250A. Biochem. Biophys. Res. Comm. 385: 586–590.

    Article  PubMed  Google Scholar 

  32. Strachan, E., Mallia, A.K., Cox, J.M., Antharavally, B., Desai, S., and Sykaluk, L., (2004) Solid-phase biotinylation of antibodies. Jour. Mol. Recognit. 17: 268–76.

    Article  CAS  Google Scholar 

  33. Collas, P., and Dahl, J.A. (2008) Chop it, ChIP it, check it: the current status of chromatin immunoprecipitation. Front. Biosci. 13: 929–943.

    Article  PubMed  CAS  Google Scholar 

  34. Nelson, J.D., Denisenko, O., Bomsztyk, K. (2006) Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nature Protocols. 1: 179–185.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank colleagues at R&D Systems who contributed for the development of this protocol, including Ernesto Resnik, Brian Hoium, and Jessie Ni.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo B. de Medeiros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

de Medeiros, R.B. (2011). Sequential Chromatin Immunoprecipitation Assay and Analysis. In: Tollefsbol, T. (eds) Epigenetics Protocols. Methods in Molecular Biology, vol 791. Humana Press. https://doi.org/10.1007/978-1-61779-316-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-316-5_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-315-8

  • Online ISBN: 978-1-61779-316-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics