Skip to main content

DNA Methyltransferase Assays

  • Protocol
  • First Online:
Epigenetics Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 791))

Abstract

DNA methyltransferases are important enzymes and their inhibition has many potential applications. The investigation of DNA methyltransferases as well as screening for potential inhibitors requires specialized enzyme assays. In this chapter, we describe three DNA methyltransferase assays, each of them based on a different method: (1) An assay using radioactively labeled AdoMet and biotinylated DNA substrates that is ideal for enzymatic characterization of these enzymes. (2) An assay using bisulfite conversion of in vitro methylated DNA that is ideal to determine details of the methylation pattern introduced by DNA-(cytosine C5)-methyltransferases. (3) A novel fluorescence-coupled, restriction-based assay suitable for high-throughput screening of DNA methyltransferase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miranda, T. B., and Jones, P. A. (2007) DNA methylation: the nuts and bolts of repression, J Cell Physiol 213, 384–390.

    Article  PubMed  CAS  Google Scholar 

  2. Jeltsch, A. (2002) Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases, Chembiochem 3, 274–293.

    Article  PubMed  CAS  Google Scholar 

  3. Hermann, A., Gowher, H., and Jeltsch, A. (2004) Biochemistry and biology of mammalian DNA methyltransferases, Cell Mol Life Sci 61, 2571–2587.

    Article  PubMed  CAS  Google Scholar 

  4. Jeltsch, A., Jurkowska, R. Z., Jurkowski, T. P., Liebert, K., Rathert, P., and Schlickenrieder, M. (2007) Application of DNA methyltransferases in targeted DNA methylation, Appl Microbiol Biotechnol 75, 1233–1240.

    Article  PubMed  CAS  Google Scholar 

  5. Lobner-Olesen, A., Skovgaard, O., and Marinus, M. G. (2005) Dam methylation: coordinating cellular processes, Curr Opin Microbiol 8, 154–160.

    Article  PubMed  CAS  Google Scholar 

  6. Jeltsch, A., and Jurkowska, R. Z. (2010) DNA Methylation, in The Chemical Biology of Nucleic Acids (Mayer, G., Ed.), pp 307–322, Wiley-VCH.

    Google Scholar 

  7. Robertson, K. D. (2005) DNA methylation and human disease, Nat Rev Genet 6, 597–610.

    Article  PubMed  CAS  Google Scholar 

  8. Jones, P. A., and Baylin, S. B. (2007) The epigenomics of cancer, Cell 128, 683–692.

    Article  PubMed  CAS  Google Scholar 

  9. Feinberg, A. P., and Tycko, B. (2004) The history of cancer epigenetics, Nat Rev Cancer 4, 143–153.

    Article  PubMed  CAS  Google Scholar 

  10. Sharma, S., Kelly, T. K., and Jones, P. A. (2010) Epigenetics in cancer, Carcinogenesis 31, 27–36.

    Article  PubMed  CAS  Google Scholar 

  11. Cheng, X. (1995) Structure and function of DNA methyltransferases, Annu Rev Biophys Biomol Struct 24, 293–318.

    Article  PubMed  CAS  Google Scholar 

  12. Oakeley, E. J. (1999) DNA methylation analysis: a review of current methodologies, Pharmacol Ther 84, 389–400.

    Article  PubMed  CAS  Google Scholar 

  13. Fraga, M. F., and Esteller, M. (2002) DNA methylation: a profile of methods and applications, Biotechniques 33, 632, 634, 636–649.

    Google Scholar 

  14. Bird, A. P., and Southern, E. M. (1978) Use of restriction enzymes to study eukaryotic DNA methylation: I. The methylation pattern in ribosomal DNA from Xenopus laevis, J Mol Biol 118, 27–47.

    Article  PubMed  CAS  Google Scholar 

  15. Bird, A. P. (1978) Use of restriction enzymes to study eukaryotic DNA methylation: II. The symmetry of methylated sites supports semi-conservative copying of the methylation pattern, J Mol Biol 118, 49–60.

    Article  PubMed  CAS  Google Scholar 

  16. Singer, J., Roberts-Ems, J., and Riggs, A. D. (1979) Methylation of mouse liver DNA studied by means of the restriction enzymes msp I and hpa II, Science 203, 1019–1021.

    Article  PubMed  CAS  Google Scholar 

  17. Frommer, M., McDonald, L. E., Millar, D. S., Collis, C. M., Watt, F., Grigg, G. W., Molloy, P. L., and Paul, C. L. (1992) A genomic sequencing protocol that yields a positive display of 5-­methylcytosine residues in individual DNA strands, Proc Natl Acad Sci U S A 89, 1827–1831.

    Article  PubMed  CAS  Google Scholar 

  18. Clark, S. J., Harrison, J., Paul, C. L., and Frommer, M. (1994) High sensitivity mapping of methylated cytosines, Nucleic Acids Res 22, 2990–2997.

    Article  PubMed  CAS  Google Scholar 

  19. Kuo, K. C., McCune, R. A., Gehrke, C. W., Midgett, R., and Ehrlich, M. (1980) Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA, Nucleic Acids Res 8, 4763–4776.

    Article  PubMed  CAS  Google Scholar 

  20. Gehrke, C. W., McCune, R. A., Gama-Sosa, M. A., Ehrlich, M., and Kuo, K. C. (1984) Quantitative reversed-phase high-performance liquid chromatography of major and modified nucleosides in DNA, J Chromatogr 301, 199–219.

    Article  PubMed  CAS  Google Scholar 

  21. Eick, D., Fritz, H. J., and Doerfler, W. (1983) Quantitative determination of 5-methylcytosine in DNA by reverse-phase high-performance liquid chromatography, Anal Biochem 135, 165–171.

    Article  PubMed  CAS  Google Scholar 

  22. Rubin, R. A., and Modrich, P. (1977) EcoRI methylase. Physical and catalytic properties of the homogeneous enzyme, J Biol Chem 252, 7265–7272.

    PubMed  CAS  Google Scholar 

  23. Hubscher, U., Pedrali-Noy, G., Knust-Kron, B., Doerfler, W., and Spadari, S. (1985) DNA methyltransferases: activity minigel analysis and determination with DNA covalently bound to a solid matrix, Anal Biochem 150, 442–448.

    Article  PubMed  CAS  Google Scholar 

  24. Jeltsch, A., Friedrich, T., and Roth, M. (1998) Kinetics of methylation and binding of DNA by the EcoRV adenine-N6 methyltransferase, J Mol Biol 275, 747–758.

    Article  PubMed  CAS  Google Scholar 

  25. Roth, M., and Jeltsch, A. (2000) Biotin-avidin microplate assay for the quantitative analysis of enzymatic methylation of DNA by DNA methyltransferases, Biol Chem 381, 269–272.

    Article  PubMed  CAS  Google Scholar 

  26. Liebert, K., and Jeltsch, A. (2008) Detection and quantitation of the activity of DNA methyltransferases using a biotin/avidin microplate assay, Methods Mol Biol 418, 149–156.

    PubMed  CAS  Google Scholar 

  27. Grunau, C., Clark, S. J., and Rosenthal, A. (2001) Bisulfite genomic sequencing: systematic investigation of critical experimental parameters, Nucleic Acids Res 29, E65-65.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang, Y., Rohde, C., Tierling, S., Stamerjohanns, H., Reinhardt, R., Walter, J., and Jeltsch, A. (2009) DNA methylation analysis by bisulfite conversion, cloning, and sequencing of individual clones, Methods Mol Biol 507, 177–187.

    Article  PubMed  CAS  Google Scholar 

  29. Laird, C. D., Pleasant, N. D., Clark, A. D., Sneeden, J. L., Hassan, K. M., Manley, N. C., Vary, J. C., Jr., Morgan, T., Hansen, R. S., and Stoger, R. (2004) Hairpin-bisulfite PCR: assessing epigenetic methylation patterns on complementary strands of individual DNA molecules, Proc Natl Acad Sci U S A 101, 204–209.

    Article  PubMed  CAS  Google Scholar 

  30. Jurkowska, R. Z., Anspach, N., Urbanke, C., Jia, D., Reinhardt, R., Nellen, W., Cheng, X., and Jeltsch, A. (2008) Formation of nucleoprotein filaments by mammalian DNA ­methyltransferase Dnmt3a in complex with regulator Dnmt3L, Nucleic Acids Res 36, 6656–6663.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang, J. H., Chung, T. D., and Oldenburg, K. R. (1999) A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays, J Biomol Screen 4, 67–73.

    Article  PubMed  Google Scholar 

  32. Rohde, C., Zhang, Y., Reinhardt, R., and Jeltsch, A. (2010) BISMA--fast and accurate bisulfite sequencing data analysis of individual clones from unique and repetitive sequences, BMC Bioinformatics 11, 230.

    Article  PubMed  Google Scholar 

  33. Rohde, C., Zhang, Y., Jurkowski, T. P., Stamerjohanns, H., Reinhardt, R., and Jeltsch, A. (2008) Bisulfite sequencing Data Presentation and Compilation (BDPC) web server--a useful tool for DNA methylation analysis, Nucleic Acids Res 36, e34.

    Article  PubMed  Google Scholar 

  34. Rohde, C., Zhang, Y., Stamerjohanns, H., Hecher, K., Reinhardt, R., and Jeltsch, A. (2009) New clustering module in BDPC bisulfite sequencing data presentation and compilation web application for DNA methylation analyses, Biotechniques 47, 781–783.

    Article  PubMed  CAS  Google Scholar 

  35. Tusnady, G. E., Simon, I., Varadi, A., and Aranyi, T. (2005) BiSearch: primer-design and search tool for PCR on bisulfite-treated genomes, Nucleic Acids Res 33, e9.

    Article  PubMed  Google Scholar 

  36. Li, L. C., and Dahiya, R. (2002) MethPrimer: designing primers for methylation PCRs, Bioinformatics 18, 1427–1431.

    Article  PubMed  CAS  Google Scholar 

  37. Yamada, Y., Watanabe, H., Miura, F., Soejima, H., Uchiyama, M., Iwasaka, T., Mukai, T., Sakaki, Y., and Ito, T. (2004) A comprehensive analysis of allelic methylation status of CpG islands on human chromosome 21q, Genome Res 14, 247–266.

    Article  PubMed  CAS  Google Scholar 

  38. Jia, D., Jurkowska, R. Z., Zhang, X., Jeltsch, A., and Cheng, X. (2007) Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation, Nature 449, 248–251.

    Article  PubMed  CAS  Google Scholar 

  39. Friedhoff, P., Gimadutdinow, O., Ruter, T., Wende, W., Urbanke, C., Thole, H., and Pingoud, A. (1994) A procedure for renaturation and purification of the extracellular Serratia marcescens nuclease from genetically engineered Escherichia coli, Protein Expr Purif 5, 37–43.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang, Y., Jurkowska, R., Soeroes, S., Rajavelu, A., Dhayalan, A., Bock, I., Rathert, P., Brandt, O., Reinhardt, R., Fischle, W., and Jeltsch, A. (2010) Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail, Nucleic Acids Res.

    Google Scholar 

  41. Handa, V., and Jeltsch, A. (2004) Anomalous mobility of polymerase chain reaction products after bisulfite treatment of DNA, Anal Biochem 333, 196–198.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Jeltsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jurkowska, R.Z., Ceccaldi, A., Zhang, Y., Arimondo, P.B., Jeltsch, A. (2011). DNA Methyltransferase Assays. In: Tollefsbol, T. (eds) Epigenetics Protocols. Methods in Molecular Biology, vol 791. Humana Press. https://doi.org/10.1007/978-1-61779-316-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-316-5_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-315-8

  • Online ISBN: 978-1-61779-316-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics