Skip to main content

Characterization of Kinase Inhibitors Using Reverse Phase Protein Arrays

  • Protocol
  • First Online:
Protein Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 785))

Abstract

Using the reverse protein array platform in combination with planar waveguide technology, which allows detection of proteins in spotted cell lysates with high sensitivity in a 96-well microtiter-plate format for growing, treating, and lysing cells was shown to be suitable for this approach and indicates the usefulness of the technology as a screening tool for characterization of large numbers of kinase inhibitors. In this study, we have used reverse protein arrays to profile kinase inhibitors in various cellular pathways in order to unravel their MoA. Multiplexing and simultaneous analysis of several phospho-proteins within the same lysate allows (1) the estimation of inhibitor concentrations needed to shut down an entire pathway, (2) the estimation of inhibitor selectivity, and (3) the comparison of inhibitors of different kinases within one assay. For example, parallel analysis of p-InsR, p-PKB, p-GSK-3, p-MEK, p-ERK, and p-S6rp in insulin treated A14 cells allows profiling for inhibitors of the InsR, PI3K, PKB, mTor, RAF, and MEK. Selective kinase inhibitors revealed different specific inhibitory pattern of the analyzed phospho-read outs. Altogether, multiplexed analysis of reverse (phase) protein arrays is a powerful tool to characterize kinase inhibitors in a semi-automated low to medium throughput assay format.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fishman, M.C. & Porter, J.A. Pharmaceuticals: a new grammar for drug discovery. Nature 437, 491–3 (2005).

    Article  PubMed  CAS  Google Scholar 

  2. Inoki, K., Corradetti, M.N. & Guan, K.L. Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet 37, 19–24 (2005).

    Article  PubMed  CAS  Google Scholar 

  3. Butcher, E.C. Can cell systems biology rescue drug discovery? Nat Rev Drug Discov 4, 461–7 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. Apic, G., Ignjatovic, T., Boyer, S. & Russell, R.B. Illuminating drug discovery with biological pathways. FEBS Lett 579, 1872–7 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. Butcher, E.C., Berg, E.L. & Kunkel, E.J. Systems biology in drug discovery. Nat Biotechnol 22, 1253–9 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. Sevecka, M. & MacBeath, G. State-based discovery: a multidimensional screen for small-molecule modulators of EGF signaling. Nat Methods 3, 825–31 (2006).

    Article  PubMed  CAS  Google Scholar 

  7. Cho, C.R., Labow, M., Reinhardt, M., van Oostrum, J. & Peitsch, M.C. The application of systems biology to drug discovery. Curr Opin Chem Biol 10, 294–302 (2006).

    Article  PubMed  CAS  Google Scholar 

  8. Mendes, K.N. et al. Analysis of signaling pathways in 90 cancer cell lines by protein lysate array. J Proteome Res 6, 2753–67 (2007).

    Article  PubMed  CAS  Google Scholar 

  9. Sheehan, K.M. et al. Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol Cell Proteomics 4, 346–55 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. Pawlak, M. et al. Zeptosens’ protein microarrays: a novel high performance microarray platform for low abundance protein analysis. Proteomics 2, 383–93 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. Wang, Z.G. et al. TAE226, a dual inhibitor for FAK and IGF-IR, has inhibitory effects on mTOR signaling in esophageal cancer cells. Oncol Rep 20, 1473–7 (2008).

    PubMed  CAS  Google Scholar 

  12. Maira, S.M. et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 7, 1851–63 (2008).

    Article  PubMed  CAS  Google Scholar 

  13. Schuler, W. et al. SDZ RAD, a new rapamycin derivative: pharmacological properties in vitro and in vivo. Transplantation 64, 36–42 (1997).

    Article  PubMed  CAS  Google Scholar 

  14. Barrett, S.D. et al. The discovery of the benzhydroxamate MEK inhibitors CI-1040 and PD 0325901. Bioorg Med Chem Lett 18, 6501–4 (2008).

    Article  PubMed  CAS  Google Scholar 

  15. Huynh, H., Soo, K.C., Chow, P.K. & Tran, E. Targeted inhibition of the extracellular signal-regulated kinase kinase pathway with AZD6244 (ARRY-142886) in the treatment of hepatocellular carcinoma. Mol Cancer Ther 6, 138–46 (2007).

    Article  PubMed  CAS  Google Scholar 

  16. Changelian, P.S. et al. Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science 302, 875–8 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. Traxler, P. et al. AEE788: a dual family epidermal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res 64, 4931–41 (2004).

    Article  PubMed  CAS  Google Scholar 

  18. Burgering, B.M. et al. Insulin stimulation of gene expression mediated by p21ras activation. Embo J 10, 1103–9 (1991).

    PubMed  CAS  Google Scholar 

  19. Zhang, J.H., Chung, T.D. & Oldenburg, K.R. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen 4, 67–73 (1999).

    Article  PubMed  Google Scholar 

  20. De Meyts, P. & Whittaker, J. Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov 1, 769–83 (2002).

    Article  PubMed  Google Scholar 

  21. Kanzaki, M. & Pessin, J.E. Signal integration and the specificity of insulin action. Cell Biochem Biophys 35, 191–209 (2001).

    Article  PubMed  CAS  Google Scholar 

  22. Kusari, A.B., Byon, J.C. & Kusari, J. Substitution of two insulin receptor carboxy-terminal tyrosines with phenylalanine impairs the expression of MAP kinase phosphatase-1 (MKP-1) mRNA. Mol Cell Biochem 211, 27–37 (2000).

    Article  PubMed  CAS  Google Scholar 

  23. Sarbassov, D.D., Guertin, D.A., Ali, S.M. & Sabatini, D.M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–101 (2005).

    Article  PubMed  CAS  Google Scholar 

  24. Srivastava, A.K. & Pandey, S.K. Potential mechanism(s) involved in the regulation of glycogen synthesis by insulin. Mol Cell Biochem 182, 135–41 (1998).

    Article  PubMed  CAS  Google Scholar 

  25. Alessi, D.R. et al. Identification of the sites in MAP kinase kinase-1 phosphorylated by p74raf-1. Embo J 13, 1610–9 (1994).

    PubMed  CAS  Google Scholar 

  26. Murphy, L.O. & Blenis, J. MAPK signal specificity: the right place at the right time. Trends Biochem Sci 31, 268–75 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. Peterson, R.T. & Schreiber, S.L. Translation control: connecting mitogens and the ribosome. Curr Biol 8, R248-50 (1998).

    Article  PubMed  CAS  Google Scholar 

  28. White, M.F., Maron, R. & Kahn, C.R. Insulin rapidly stimulates tyrosine phosphorylation of a Mr-185,000 protein in intact cells. Nature 318, 183–6 (1985).

    Article  PubMed  CAS  Google Scholar 

  29. Foxwell, B.M., Barrett, K. & Feldmann, M. Cytokine receptors: structure and signal transduction. Clin Exp Immunol 90, 161–9 (1992).

    Article  PubMed  CAS  Google Scholar 

  30. Yamaoka, K. et al. The Janus kinases (Jaks). Genome Biol 5, 253 (2004).

    Article  PubMed  Google Scholar 

  31. Kisseleva, T., Bhattacharya, S., Braunstein, J. & Schindler, C.W. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285, 1–24 (2002).

    Article  PubMed  CAS  Google Scholar 

  32. Murray, P.J. The JAK-STAT signaling pathway: input and output integration. J Immunol 178, 2623–9 (2007).

    PubMed  CAS  Google Scholar 

  33. O’Shea, J.J., Gadina, M. & Schreiber, R.D. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109 Suppl, S121-31 (2002).

    Google Scholar 

  34. Stark, G.R., Kerr, I.M., Williams, B.R., Silverman, R.H. & Schreiber, R.D. How cells respond to interferons. Annu Rev Biochem 67, 227–64 (1998).

    Article  PubMed  CAS  Google Scholar 

  35. Mogensen, K.E., Lewerenz, M., Reboul, J., Lutfalla, G. & Uze, G. The type I interferon receptor: structure, function, and evolution of a family business. J Interferon Cytokine Res 19, 1069–98 (1999).

    Article  PubMed  CAS  Google Scholar 

  36. Yeh, T.C. & Pellegrini, S. The Janus kinase family of protein tyrosine kinases and their role in signaling. Cell Mol Life Sci 55, 1523–34 (1999).

    Article  PubMed  CAS  Google Scholar 

  37. Durbin, J.E., Hackenmiller, R., Simon, M.C. & Levy, D.E. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84, 443–50 (1996).

    Article  PubMed  CAS  Google Scholar 

  38. Schindler, C., Fu, X.Y., Improta, T., Aebersold, R. & Darnell, J.E., Jr. Proteins of transcription factor ISGF-3: one gene encodes the 91-and 84-kDa ISGF-3 proteins that are activated by interferon alpha. Proc Natl Acad Sci USA 89, 7836–9 (1992).

    Article  PubMed  CAS  Google Scholar 

  39. Takeda, K. et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci USA 94, 3801–4 (1997).

    Article  PubMed  CAS  Google Scholar 

  40. Vogel, S. et al. MEK hyperphosphorylation coincides with cell cycle shut down of cultured smooth muscle cells. J Cell Physiol 206, 25–34 (2006).

    Article  PubMed  CAS  Google Scholar 

  41. Okuzumi, T. et al. Inhibitor hijacking of Akt activation. Nat Chem Biol 5, 484–93 (2009).

    Article  PubMed  CAS  Google Scholar 

  42. Cameron, A.J., Escribano, C., Saurin, A.T., Kostelecky, B. & Parker, P.J. PKC maturation is promoted by nucleotide pocket occupation independently of intrinsic kinase activity. Nat Struct Mol Biol 16, 624–30 (2009).

    Article  PubMed  CAS  Google Scholar 

  43. de Wet, J.R., Wood, K.V., DeLuca, M., Helinski, D.R. & Subramani, S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol 7, 725–37 (1987).

    PubMed  Google Scholar 

  44. Fan, F. & Wood, K.V. Bioluminescent assays for high-throughput screening. Assay Drug Dev Technol 5, 127–36 (2007).

    Article  PubMed  CAS  Google Scholar 

  45. Zlokarnik, G. et al. Quantitation of transcription and clonal selection of single living cells with beta-lactamase as reporter. Science 279, 84–8 (1998).

    Article  PubMed  CAS  Google Scholar 

  46. Chin, J. et al. Miniaturization of cell-based beta-lactamase-dependent FRET assays to ultra-high throughput formats to identify agonists of human liver X receptors. Assay Drug Dev Technol 1, 777–87 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doriano Fabbro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Martiny-Baron, G., Haasen, D., D’Dorazio, D., Voshol, J., Fabbro, D. (2011). Characterization of Kinase Inhibitors Using Reverse Phase Protein Arrays. In: Korf, U. (eds) Protein Microarrays. Methods in Molecular Biology, vol 785. Humana Press. https://doi.org/10.1007/978-1-61779-286-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-286-1_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-285-4

  • Online ISBN: 978-1-61779-286-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics