Skip to main content

Phosphoprotein Stability in Clinical Tissue and Its Relevance for Reverse Phase Protein Microarray Technology

  • Protocol
  • First Online:
Protein Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 785))

Abstract

Phosphorylated proteins reflect the activity of specific cell signaling nodes in biological kinase protein networks. Cell signaling pathways can be either activated or deactivated depending on the phosphorylation state of the constituent proteins. The state of these kinase pathways reflects the in vivo activity of the cells and tissue at any given point in time. As such, cell signaling pathway information can be extrapolated to infer which phosphorylated proteins/pathways are driving an individual tumor’s growth. Reverse phase protein microarrays (RPMAs) are a sensitive and precise platform that can be applied to the quantitative measurement of hundreds of phosphorylated signal proteins from a small sample of tissue. Pre-analytical variability originating from tissue procurement and preservation may cause significant variability and bias in downstream molecular analysis. Depending on the ex vivo delay time in tissue processing, and the manner of tissue handling, protein biomarkers such as signal pathway phosphoproteins will be elevated or suppressed in a manner that does not represent the biomarker levels at the time of excision. Consequently, assessment of the state of these kinase networks requires stabilization, or preservation, of the phosphoproteins immediately post-tissue procurement. We have employed RPMA analysis of phosphoproteins to study the factors influencing stability of phosphoproteins in tissue following procurement. Based on this analysis we have established tissue procurement guidelines for clinical research with an emphasis on quantifying phosphoproteins by RPMA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Espina, V., Edmiston, K. H., Heiby, M., Pierobon, M., Sciro, M., et al. (2008) A portrait of tissue phosphoprotein stability in the clinical tissue procurement process. Mol Cell Proteomics 7, 1998–2018.

    Article  PubMed  CAS  Google Scholar 

  2. Li, X., Friedman, A. B., Roh, M. S., and Jope, R. S. (2005) Anesthesia and post-mortem interval profoundly influence the regulatory serine phosphorylation of glycogen synthase kinase-3 in mouse brain. J Neurochem 92, 701–4.

    Article  PubMed  Google Scholar 

  3. Li, J., Gould, T. D., Yuan, P., Manji, H. K., and Chen, G. (2003) Post-mortem interval effects on the phosphorylation of signaling proteins. Neuropsychopharmacology 28, 1017–25.

    Article  PubMed  CAS  Google Scholar 

  4. Becker, K. F., Schott, C., Hipp, S., Metzger, V., Porschewski, P., et al. (2007) Quantitative protein analysis from formalin-fixed tissues: implications for translational clinical research and nanoscale molecular diagnosis. J Pathol 211, 370–8.

    Article  PubMed  CAS  Google Scholar 

  5. Fox, C. H., Johnson, F. B., Whiting, J., and Roller, P. P. (1985) Formaldehyde fixation. J Histochem Cytochem 33, 845–53.

    Article  PubMed  CAS  Google Scholar 

  6. Helander, K. G. (1994) Kinetic studies of formaldehyde binding in tissue. Biotech Histochem 69, 177–9.

    Article  PubMed  CAS  Google Scholar 

  7. Srinivasan, M., Sedmak, D., and Jewell, S. (2002) Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol 161, 1961–71.

    Article  PubMed  CAS  Google Scholar 

  8. Nassiri, M., Ramos, S., Zohourian, H., Vincek, V., Morales, A. R., et al. (2008) Preservation of biomolecules in breast cancer tissue by a formalin-free histology system. BMC Clin Pathol 8, 1.

    Article  PubMed  Google Scholar 

  9. Devireddy, R. V. (2005) Predicted permeability parameters of human ovarian tissue cells to various cryoprotectants and water. Mol Reprod Dev 70, 333–43.

    Article  PubMed  CAS  Google Scholar 

  10. He, Y., and Devireddy, R. V. (2005) An inverse approach to determine solute and solvent permeability parameters in artificial tissues. Ann Biomed Eng 33, 709–18.

    Article  PubMed  Google Scholar 

  11. Goldstein, B. J. (2002) Protein-tyrosine phosphatases: emerging targets for therapeutic intervention in type 2 diabetes and related states of insulin resistance. J Clin Endocrinol Metab 87, 2474–80.

    Article  PubMed  CAS  Google Scholar 

  12. Neel, B. G., and Tonks, N. K. (1997) Protein tyrosine phosphatases in signal transduction. Curr Opin Cell Biol 9, 193–204.

    Article  PubMed  CAS  Google Scholar 

  13. Grellner, W., Vieler, S., and Madea, B. (2005) Transforming growth factors (TGF-alpha and TGF-beta1) in the determination of vitality and wound age: immunohistochemical study on human skin wounds. Forensic Sci Int 153, 174–80.

    Article  PubMed  CAS  Google Scholar 

  14. Grellner, W. (2002) Time-dependent immunohistochemical detection of proinflammatory cytokines (IL-1beta, IL-6, TNF-alpha) in human skin wounds. Forensic Sci Int 130, 90–6.

    Article  PubMed  CAS  Google Scholar 

  15. Grellner, W., and Madea, B. (2007) Demands on scientific studies: vitality of wounds and wound age estimation. Forensic Sci Int 165, 150–4.

    Article  PubMed  Google Scholar 

  16. Ohshima, T. (2000) Forensic wound examination. Forensic Sci Int 113, 153–64.

    Article  PubMed  CAS  Google Scholar 

  17. Oehmichen, M. (2004) Vitality and time course of wounds. Forensic Sci Int 144, 221–31.

    Article  PubMed  CAS  Google Scholar 

  18. Paweletz, C. P., Charboneau, L., Bichsel, V. E., Simone, N. L., Chen, T., et al. (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20, 1981–9.

    Article  PubMed  CAS  Google Scholar 

  19. Petricoin, E. F., 3rd, Espina, V., Araujo, R. P., Midura, B., Yeung, C., et al. (2007) Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res 67, 3431–40.

    Article  PubMed  CAS  Google Scholar 

  20. VanMeter, A., Signore, M., Pierobon, M., Espina, V., Liotta, L. A., et al. (2007) Reverse-phase protein microarrays: application to biomarker discovery and translational medicine. Expert Rev Mol Diagn 7, 625–33.

    Article  PubMed  CAS  Google Scholar 

  21. Wulfkuhle, J. D., Speer, R., Pierobon, M., Laird, J., Espina, V., et al. (2008) Multiplexed cell signaling analysis of human breast cancer applications for personalized therapy. J Proteome Res 7, 1508–17.

    Article  PubMed  CAS  Google Scholar 

  22. Espina, V., Mehta, A. I., Winters, M. E., Calvert, V., Wulfkuhle, J., et al. (2003) Protein microarrays: molecular profiling technologies for clinical specimens. Proteomics 3, 2091–100.

    Article  PubMed  CAS  Google Scholar 

  23. Belluco, C., Mammano, E., Petricoin, E., Prevedello, L., Calvert, V., et al. (2005) Kinase substrate protein microarray analysis of human colon cancer and hepatic metastasis. Clin Chim Acta 357, 180–3.

    Article  PubMed  CAS  Google Scholar 

  24. Berggren, K., Steinberg, T. H., Lauber, W. M., Carroll, J. A., Lopez, M. F., et al. (1999) A luminescent ruthenium complex for ultrasensitive detection of proteins immobilized on membrane supports. Anal Biochem 276, 129–43.

    Article  PubMed  CAS  Google Scholar 

  25. Berggren, K. N., Schulenberg, B., Lopez, M. F., Steinberg, T. H., Bogdanova, A., et al. (2002) An improved formulation of SYPRO Ruby protein gel stain: comparison with the original formulation and with a ruthenium II tris (bathophenanthroline disulfonate) formulation. Proteomics 2, 486–98.

    Article  PubMed  CAS  Google Scholar 

  26. Espina, V., Wulfkuhle, J. D., Calvert, V. S., VanMeter, A., Zhou, W., et al. (2006) Laser-capture microdissection. Nat Protoc 1, 586–603.

    Article  PubMed  CAS  Google Scholar 

  27. Stillman, B. A., and Tonkinson, J. L. (2000) FAST slides: a novel surface for microarrays. Biotechniques 29, 630–5.

    PubMed  CAS  Google Scholar 

  28. Tonkinson, J. L., and Stillman, B. A. (2002) Nitrocellulose: a tried and true polymer finds utility as a post-genomic substrate. Front Biosci 7, c1–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia Espina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Espina, V., Mueller, C., Liotta, L.A. (2011). Phosphoprotein Stability in Clinical Tissue and Its Relevance for Reverse Phase Protein Microarray Technology. In: Korf, U. (eds) Protein Microarrays. Methods in Molecular Biology, vol 785. Humana Press. https://doi.org/10.1007/978-1-61779-286-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-286-1_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-285-4

  • Online ISBN: 978-1-61779-286-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics