Skip to main content

How to Perform a Nanoindentation Experiment on a Virus

  • Protocol
  • First Online:
Single Molecule Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 783))

Abstract

To broaden our knowledge on virus structure and function, a profound insight into their mechanical properties is required. Nanoindentation measurements with an atomic force microscope (AFM) are increasingly being performed to probe such material properties. This single-particle approach allows for determining the viral spring constant, their Young’s modulus, as well as the force and deformation at which failure occurs. The experimental procedures for viral nanoindentation experiments are described here in detail, focusing on surface preparation, AFM imaging and nanoindentation, and the subsequent data analysis of the force–distance curves. Whereas AFM can be operated in air and in liquid, the described methods are for probing single viruses in liquid to enable working in a physiologically relevant environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kol, N., Shi, Y., Tsvitov, M., Barlam, D., Shneck, R. Z., Kay, M. S., and Rousso, I. (2007) A stiffness switch in human immunodeficiency virus, Biophys J 92, 1777–83.

    Article  PubMed  CAS  Google Scholar 

  2. Ivanovska, I., Wuite, G., Jonsson, B., and Evilevitch, A. (2007) Internal DNA pressure modifies stability of WT phage, Proc Natl Acad Sci USA 104, 9603–8.

    Article  PubMed  CAS  Google Scholar 

  3. Roos, W. H., Radtke, K., Kniesmeijer, E., Geertsema, H., Sodeik, B., and Wuite, G. J. (2009) Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids, Proc Natl Acad Sci USA 106, 9673–8.

    Article  PubMed  CAS  Google Scholar 

  4. Ivanovska, I. L., de Pablo, P. J., Ibarra, B., Sgalari, G., MacKintosh, F. C., Carrascosa, J. L., Schmidt, C. F., and Wuite, G. J. L. (2004) Bacteriophage capsids: Tough nanoshells with complex elastic properties, Proc Natl Acad Sci USA 101, 7600–5.

    Article  PubMed  CAS  Google Scholar 

  5. Roos, W. H., Ivanovska, I. L., Evilevitch, A., and Wuite, G. J. L. (2007) Viral capsids: Mechanical characteristics, genome packaging and delivery mechanisms, Cell Mol Life Sci 64, 1484–97.

    Article  PubMed  CAS  Google Scholar 

  6. Roos, W. H., and Wuite, G. J. L. (2009) Nanoindentation studies reveal material properties of viruses, Adv Mater 21, 1187–92.

    Article  CAS  Google Scholar 

  7. Hansma, P. K., Cleveland, J. P., Radmacher, M., Walters, D. A., Hillner, P. E., Bezanilla, M., Fritz, M., Vie, D., Hansma, H. G., Prater, C. B., Massie, J., Fukunaga, L., Gurley, J., and Elings, V. (1994) Tapping Mode Atomic-Force Microscopy in Liquids, Appl Phys Lett 64, 1738–40.

    Article  CAS  Google Scholar 

  8. Putman, C. A. J., Vanderwerf, K. O., Degrooth, B. G., Vanhulst, N. F., and Greve, J. (1994) Tapping Mode Atomic-Force Microscopy In Liquid, Appl Phys Lett 64, 2454–6.

    Article  CAS  Google Scholar 

  9. de Pablo, P. J., Colchero, J., Gomez-Herrero, J., and Baro, A. M. (1998) Jumping mode scanning force microscopy, Appl Phys Lett 73, 3300–2.

    Article  Google Scholar 

  10. Michel, J. P., Ivanovska, I. L., Gibbons, M. M., Klug, W. S., Knobler, C. M., Wuite, G. J. L., and Schmidt, C. F. (2006) Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength, Proc Natl Acad Sci USA 103, 6184–9.

    Article  PubMed  CAS  Google Scholar 

  11. Carrasco, C., Carreira, A., Schaap, I. A. T., Serena, P. A., Gomez-Herrero, J., Mateu, M. G., and Pablo, P. J. (2006) DNA-mediated anisotropic mechanical reinforcement of a virus, Proc Natl Acad Sci USA 103, 13706–11.

    Article  PubMed  CAS  Google Scholar 

  12. Uetrecht, C., Versluis, C., Watts, N. R., Roos, W. H., Wuite, G. J., Wingfield, P. T., Steven, A. C., and Heck, A. J. (2008) High-resolution mass spectrometry of viral assemblies: Molecular composition and stability of dimorphic hepatitis B virus capsids, Proc Natl Acad Sci USA 105, 9216–20.

    Article  PubMed  CAS  Google Scholar 

  13. Carrasco, C., Castellanos, M., de Pablo, P. J., and Mateu, M. G. (2008) Manipulation of the mechanical properties of a virus by protein engineering, Proc Natl Acad Sci USA 105, 4150–5.

    Article  PubMed  CAS  Google Scholar 

  14. Arkhipov, A., Roos, W. H., Wuite, G. J., and Schulten, K. (2009) Elucidating the mechanism behind irreversible deformation of viral capsids, Biophys J 97, 2061–9.

    Article  PubMed  CAS  Google Scholar 

  15. Sader, J. E., Chon, J. W. M., and Mulvaney, P. (1999) Calibration of rectangular atomic force microscope cantilevers, Rev Sci Instrum 70, 3967–9.

    Article  CAS  Google Scholar 

  16. Gibbons, M. M., and Klug, W. S. (2007) Nonlinear finite-element analysis of nanoindentation of viral capsids, Phys Rev E 75, 031901.

    Article  Google Scholar 

  17. Gibbons, M. M., and Klug, W. S. (2008) Influence of nonuniform geometry on nanoindentation of viral capsids, Biophys J 95, 3640–9.

    Article  PubMed  CAS  Google Scholar 

  18. Landau, L. D., and Lifshitz, E. M. (1986) Theory of Elasticity, 3rd ed., Elsevier, Oxford.

    Google Scholar 

  19. Baclayon, M., Wuite, G. J. L., and Roos, W. H. (2010) Imaging and manipulation of single viruses by atomic force microscopy, Soft Matter 6, 5273–85.

    Google Scholar 

  20. Kol, N., Gladnikoff, M., Barlam, D., Shneck, R. Z., Rein, A., and Rousso, I. (2006) Mechanical properties of murine leukemia virus particles: Effect of maturation, Biophys J 91, 767–74.

    Article  PubMed  CAS  Google Scholar 

  21. Klug, W. S., Bruinsma, R. F., Michel, J. P., Knobler, C. M., Ivanovska, I. L., Schmidt, C. F., and Wuite, G. J. L. (2006) Failure of viral shells, Phys Rev Lett 97, 228101.

    Article  PubMed  Google Scholar 

  22. Liashkovich, I., Hafezi, W., Kuhn, J. E., Oberleithner, H., Kramer, A., and Shahin, V. (2008) Exceptional mechanical and structural stability of HSV-1 unveiled with fluid atomic force microscopy, J Cell Sci 121, 2287–92.

    Article  PubMed  CAS  Google Scholar 

  23. Zhao, Y., Ge, Z. B., and Fang, J. Y. (2008) Elastic modulus of viral nanotubes, Phys Rev E 78, 031914.

    Article  Google Scholar 

  24. Kienberger, F., Zhu, R., Moser, R., Blaas, D., and Hinterdorfer, P. (2004) Monitoring RNA release from human rhinovirus by dynamic force microscopy, J Virol 78, 3203–9.

    Article  PubMed  CAS  Google Scholar 

  25. Xu, X., Carrasco, C., de Pablo, P. J., Gomez-Herrero, J., and Raman, A. (2008) Unmasking imaging forces on soft biological samples in liquids when using dynamic atomic force microscopy: A case study on viral capsids, Biophys J 95, 2520–8.

    Article  PubMed  CAS  Google Scholar 

  26. Butt, H. J., Cappella, B., and Kappl, M. (2005) Force measurements with the atomic force microscope: Technique, interpretation and applications, Surface Science Reports 59, 1–152.

    Article  CAS  Google Scholar 

  27. Gibbons, M. M., and Klug, W. S. (2007) Mechanical modeling of viral capsids, J Mater Sci 42, 8995–9004.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank G.J.L. Wuite and I. Ivanovska for introducing me to the experimental nanoindentation technique and analysis tools. M. Baclayon is thanked for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wouter H. Roos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Roos, W.H. (2011). How to Perform a Nanoindentation Experiment on a Virus. In: Peterman, E., Wuite, G. (eds) Single Molecule Analysis. Methods in Molecular Biology, vol 783. Humana Press. https://doi.org/10.1007/978-1-61779-282-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-282-3_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-281-6

  • Online ISBN: 978-1-61779-282-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics