Skip to main content

Quality Control Methodology for High-Throughput Protein–Protein Interaction Screening

  • Protocol
  • First Online:
Network Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 781))

Abstract

Protein–protein interactions are key to many aspects of the cell, including its cytoskeletal structure, the signaling processes in which it is involved, or its metabolism. Failure to form protein complexes or signaling cascades may sometimes translate into pathologic conditions such as cancer or neurodegenerative diseases. The set of all protein interactions between the proteins encoded by an organism constitutes its protein interaction network, representing a scaffold for biological function. Knowing the protein interaction network of an organism, combined with other sources of biological information, can unravel fundamental biological circuits and may help better understand the molecular basics of human diseases. The protein interaction network of an organism can be mapped by combining data obtained from both low-throughput screens, i.e., “one gene at a time” experiments and high-throughput screens, i.e., screens designed to interrogate large sets of proteins at once. In either case, quality controls are required to deal with the inherent imperfect nature of experimental assays. In this chapter, we discuss experimental and statistical methodologies to quantify error rates in high-throughput protein–protein interactions screens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, et al. (2002) Molecular Biology of the Cell New York: Garland Science.

    Google Scholar 

  2. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, et al. (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17: 1030–1032.

    Article  PubMed  CAS  Google Scholar 

  3. Bauer A, Kuster B (2003) Affinity purification-mass spectrometry. Powerful tools for the characterization of protein complexes. Eur J Biochem 270: 570–578.

    Article  PubMed  CAS  Google Scholar 

  4. Ewing RM, Chu P, Elisma F, Li H, Taylor P, et al. (2007) Large-scale mapping of human protein–protein interactions by mass spectrometry. Mol Syst Biol 3: 89.

    Article  PubMed  Google Scholar 

  5. Köcher T, Superti-Furga G (2007) Mass spectrometry-based functional proteomics: from molecular machines to protein networks. Nat Methods 4: 807–815.

    Article  PubMed  Google Scholar 

  6. Shevchenko A, Schaft D, Roguev A, Pijnappel WW, Stewart AF (2002) Deciphering protein complexes and protein interaction networks by tandem affinity purification and mass spectrometry: analytical perspective. Mol Cell Proteomics 1: 204–212.

    Article  PubMed  CAS  Google Scholar 

  7. Vasilescu J, Figeys D (2006) Mapping protein–protein interactions by mass spectrometry. Curr Opin Biotechnol 17: 394–399.

    Article  PubMed  CAS  Google Scholar 

  8. Fields S, Song O (1989) A novel genetic system to detect protein–protein interactions. Nature 340: 245–246.

    Article  PubMed  CAS  Google Scholar 

  9. Gan X, Kitakawa M, Yoshino K, Oshiro N, Yonezawa K, et al. (2002) Tag-mediated isolation of yeast mitochondrial ribosome and mass spectrometric identification of its new components. Eur J Biochem 269: 5203–5214.

    Article  PubMed  CAS  Google Scholar 

  10. Huang L, Baldwin MA, Maltby DA, Medzihradszky KF, Baker PR, et al. (2002) The identification of protein–protein interactions of the nuclear pore complex of Saccharomyces cerevisiae using high throughput matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry. Mol Cell Proteomics 1: 434–450.

    Article  PubMed  CAS  Google Scholar 

  11. Fields S (2005) High-throughput two-hybrid analysis. The promise and the peril. FEBS J 272: 5391–5399.

    Article  PubMed  CAS  Google Scholar 

  12. Fields S, Sternglanz R (1994) The two-hybrid system: an assay for protein–protein interactions. Trends Genet 10: 286–292.

    Article  PubMed  CAS  Google Scholar 

  13. Ito T, Tashiro K, Muta S, Ozawa R, Chiba T, et al. (2000) Toward a protein–protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc Natl Acad Sci USA 97: 1143–1147.

    Article  PubMed  CAS  Google Scholar 

  14. Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, et al. (2003) A protein interaction map of Drosophila melanogaster. Science 302: 1727–1736.

    Article  PubMed  CAS  Google Scholar 

  15. Li S, Armstrong CM, Bertin N, Ge H, Milstein S, et al. (2004) A map of the interactome network of the metazoan C. elegans. Science 303: 540–543.

    Article  PubMed  CAS  Google Scholar 

  16. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, et al. (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437: 1173–1178.

    Article  PubMed  CAS  Google Scholar 

  17. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, et al. (2005) A human protein–protein interaction network: a resource for annotating the proteome. Cell 122: 957–968.

    Article  PubMed  CAS  Google Scholar 

  18. Cagney G, Uetz P, Fields S (2001) Two-hybrid analysis of the Saccharomyces cerevisiae 26S proteasome. Physiol Genomics 7: 27–34.

    PubMed  CAS  Google Scholar 

  19. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, et al. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415: 180–183.

    Article  PubMed  CAS  Google Scholar 

  20. von Mering C, Krause R, Snel B, Cornell M, Oliver SG, et al. (2002) Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417: 399–403.

    Article  Google Scholar 

  21. D’Haeseleer P, Church GM (2004) Estimating and improving protein interaction error rates. Proc IEEE Comput Syst Bioinform Conf: 216–223.

    Google Scholar 

  22. Hart GT, Ramani AK, Marcotte EM (2006) How complete are current yeast and human protein-interaction networks? Genome Biol 7: 120.

    Article  PubMed  Google Scholar 

  23. Stumpf MP, Thorne T, de Silva E, Stewart R, An HJ, et al. (2008) Estimating the size of the human interactome. Proc Natl Acad Sci USA 105: 6959–6964.

    Article  PubMed  CAS  Google Scholar 

  24. Venkatesan K, Rual JF, Vazquez A, Stelzl U, Lemmens I, et al. (2009) An empirical framework for binary interactome mapping. Nat Methods 6: 83–90.

    Article  PubMed  CAS  Google Scholar 

  25. Bader JS (2003) Greedily building protein networks with confidence. Bioinformatics 19: 1869–1874.

    Article  PubMed  CAS  Google Scholar 

  26. Bader JS, Chaudhuri A, Rothberg JM, Chant J (2004) Gaining confidence in high-throughput protein interaction networks. Nat Biotechnol 22: 78–85.

    Article  PubMed  CAS  Google Scholar 

  27. Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, et al. (2004) Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature 430: 88–93.

    Article  PubMed  CAS  Google Scholar 

  28. Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, et al. (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431: 308–312.

    Article  PubMed  CAS  Google Scholar 

  29. Rachlin J, Cohen DD, Cantor C, Kasif S (2006) Biological context networks: a mosaic view of the interactome. Mol Syst Biol 2: 66.

    Article  PubMed  Google Scholar 

  30. Bossi A, Lehner B (2009) Tissue specificity and the human protein interaction network. Mol Syst Biol 5: 260.

    Article  PubMed  Google Scholar 

  31. Braun P, Tasan M, Dreze M, Barrios-Rodiles M, Lemmens I, et al. (2009) An experimentally derived confidence score for binary protein–protein interactions. Nat Methods 6: 91–97.

    Article  PubMed  CAS  Google Scholar 

  32. Stagljar I, Korostensky C, Johnsson N, te Heesen S (1998) A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc Natl Acad Sci USA 95: 5187–5192.

    Article  PubMed  CAS  Google Scholar 

  33. Jansen R, Yu H, Greenbaum D, Kluger Y, Krogan NJ, et al. (2003) A Bayesian networks approach for predicting protein–protein interactions from genomic data. Science 302: 449–453.

    Article  PubMed  CAS  Google Scholar 

  34. Ben-Hur A, Noble WS (2006) Choosing negative examples for the prediction of protein–protein interactions. BMC Bioinfor­matics 7 Suppl 1: S2.

    Google Scholar 

  35. Gomez A, Domedel N, Cedano J, Pinol J, Querol E (2003) Do current sequence analysis algorithms disclose multifunctional (moonlighting) proteins? Bioinformatics 19: 895–896.

    Article  PubMed  CAS  Google Scholar 

  36. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. New York: Springer.

    Google Scholar 

  37. Yu H, Braun P, Yildirim MA, Lemmens I, Venkatesan K, et al. (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322: 104–110.

    Article  PubMed  CAS  Google Scholar 

  38. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Aut Cont AC-19: 716–723.

    Google Scholar 

  39. Chen M-H, Shao Q-M, Ibrahim JG (2000) Monte Carlo methods in Bayesian computation. New York: Springer. xiii, pp. 386.

    Google Scholar 

  40. Vinayagam A, Stelzl U, Wanker EE (2010) Repeated two-hybrid screening detects transient protein–protein interactions Theoretical Chemistry Accounts 125: 613–619.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

AV is supported by the RWJ Foundation, Project title: “Strengthening the Cancer Institute of New Jersey in Cancer Prevention, Control and Population Science to Improve Cancer Care,” Cancer Informatics Category. JFR is supported by a fellowship from the Deutsche José Carreras Leukämie-Stiftung e. V. We thank past and current members of the Barabasi, Roth, Tavernier, Vidal, and Wanker Labs for helpful discussions during the development of the empirical framework for binary PIN mapping.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Vazquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Vazquez, A., Rual, JF., Venkatesan, K. (2011). Quality Control Methodology for High-Throughput Protein–Protein Interaction Screening. In: Cagney, G., Emili, A. (eds) Network Biology. Methods in Molecular Biology, vol 781. Humana Press. https://doi.org/10.1007/978-1-61779-276-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-276-2_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-275-5

  • Online ISBN: 978-1-61779-276-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics