Skip to main content

Phosphoproteomics Using iTRAQ

  • Protocol
  • First Online:
Plant Kinases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 779))

Abstract

The identification of phosphorylation on proteins has become practicable for many laboratories in recent years, largely due to improvements in mass spectrometry (MS) and the development of methods to selectively enrich for phosphorylated peptides and proteins. However, phosphorylation is a dynamic and reversible modification which plays a central role in many biological processes including intracellular signalling. Therefore, the quantitative analysis of phosphorylated proteins and peptides is a subject of intense interest. We discuss three applications of isobaric tags for relative and absolute quantitation (iTRAQ) to the analysis of phosphopeptides from a variety of sample materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peck, S. C., Nuhse, T. S., Hess, D., Iglesias, A., Meins, F., and Boller, T. (2001) Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors. Plant Cell13, 1467–75.

    Article  CAS  Google Scholar 

  2. Nuhse, T. S., Boller, T., and Peck, S. C. (2003) A plasma membrane syntaxin is phosphorylated in response to the bacterial elicitor flagellin. J Biol Chem278, 45248–54.

    Article  CAS  Google Scholar 

  3. Tang, W., Deng, Z., Oses-Prieto, J. A., Suzuki, N., Zhu, S., Zhang, X., Burlingame, A. L., and Wang, Z. Y. (2008) Proteomics studies of brassinosteroid signal transduction using prefractionation and two-dimensional DIGE. Mol Cell Proteomics7, 728–38.

    Article  CAS  Google Scholar 

  4. Rohrig, H., Colby, T., Schmidt, J., Harzen, A., Facchinelli, F., and Bartels, D. (2008) Analysis of desiccation-induced candidate phosphoproteins from Craterostigma plantagineum isolated with a modified metal oxide affinity chromatography procedure. Proteomics8, 3548–60.

    Article  CAS  Google Scholar 

  5. Laugesen, S., Messinese, E., Hem, S., Pichereaux, C., Grat, S., Ranjeva, R., Rossignol, M., and Bono, J. J. (2006) Phosphoproteins analysis in plants: a proteomic approach. Phytochemistry67, 2208–14.

    Article  CAS  Google Scholar 

  6. Agrawal, G. K., and Thelen, J. J. (2006) Large scale identification and quantitative profiling of phosphoproteins expressed during seed filling in oilseed rape. Mol Cell Proteomics5, 2044–59.

    Article  CAS  Google Scholar 

  7. Ndimba, B. K., Chivasa, S., Hamilton, J. M., Simon, W. J., and Slabas, A. R. (2003) Proteomic analysis of changes in the extracellular matrix of Arabidopsis cell suspension cultures induced by fungal elicitors. Proteomics3, 1047–59.

    Article  CAS  Google Scholar 

  8. Ficarro, S. B., McCleland, M. L., Stukenberg, P. T., Burke, D. J., Ross, M. M., Shabanowitz, J., Hunt, D. F., and White, F. M. (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol20, 301–5.

    Article  CAS  Google Scholar 

  9. Nuhse, T. S., Stensballe, A., Jensen, O. N., and Peck, S. C. (2003) Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteomics2, 1234–43.

    Article  CAS  Google Scholar 

  10. Ficarro, S. B., Salomon, A. R., Brill, L. M., Mason, D. E., Stettler-Gill, M., Brock, A., and Peters, E. C. (2005) Automated immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry platform for profiling protein phosphorylation sites. Rapid Communications in Mass Spectrometry19, 57–71.

    Article  CAS  Google Scholar 

  11. Larsen, M. R., Thingholm, T. E., Jensen, O. N., Roepstorff, P., and Jorgensen, T. J. (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics.

    Google Scholar 

  12. Sugiyama, N., Nakagami, H., Mochida, K., Daudi, A., Tomita, M., Shirasu, K., and Ishihama, Y. (2008) Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol Syst Biol4, 193.

    Article  Google Scholar 

  13. Beausoleil, S. A., Jedrychowski, M., Schwartz, D., Elias, J. E., Villen, J., Li, J., Cohn, M. A., Cantley, L. C., and Gygi, S. P. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A101, 12130–5.

    Article  CAS  Google Scholar 

  14. Vener, A. V., Harms, A., Sussman, M. R., and Vierstra, R. D. (2001) Mass spectrometric resolution of reversible protein phosphorylation in photosynthetic membranes of Arabidopsis thaliana. J Biol Chem276, 6959–66.

    Article  CAS  Google Scholar 

  15. Nuhse, T. S., Stensballe, A., Jensen, O. N., and Peck, S. C. (2004) Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell16, 2394–405.

    Article  Google Scholar 

  16. Whiteman, S. A., Serazetdinova, L., Jones, A. M., Sanders, D., Rathjen, J., Peck, S. C., and Maathuis, F. J. (2008) Identification of novel proteins and phosphorylation sites in a tonoplast enriched membrane fraction of Arabidopsis thaliana. Proteomics8, 3536–47.

    Article  CAS  Google Scholar 

  17. Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., and Mann, M. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics1, 376–86.

    Article  CAS  Google Scholar 

  18. Gruhler, A., Schulze, W. X., Matthiesen, R., Mann, M., and Jensen, O. N. (2005) Stable isotope labeling of Arabidopsis thaliana cells and quantitative proteomics by mass spectrometry. Mol Cell Proteomics4, 1697–709.

    Article  CAS  Google Scholar 

  19. Niittyla, T., Fuglsang, A. T., Palmgren, M. G., Frommer, W. B., and Schulze, W. X. (2007) Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol Cell Proteomics.

    Google Scholar 

  20. Ross, P. L., Huang, Y. L. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., and Pappin, D. J. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Molecular & Cellular Proteomics3, 1154–1169.

    Article  CAS  Google Scholar 

  21. Blagoev, B., Ong, S. E., Kratchmarova, I., and Mann, M. (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol22, 1139–45.

    Article  CAS  Google Scholar 

  22. Jones, A. M., Bennett, M. H., Mansfield, J. W., and Grant, M. (2006) Analysis of the defence phosphoproteome of Arabidopsis thaliana using differential mass tagging. Proteomics6, 4155–65.

    Article  CAS  Google Scholar 

  23. Nuhse, T. S., Bottrill, A. R., Jones, A. M., and Peck, S. C. (2007) Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J51, 931–40.

    Article  CAS  Google Scholar 

  24. Wu, J., Shakey, Q., Liu, W., Schuller, A., and Follettie, M. T. (2007) Global profiling of phosphopeptides by titania affinity enrichment. J Proteome Res6, 4684–9.

    Article  CAS  Google Scholar 

  25. Pflieger, D., Junger, M., Muller, M., Rinner, O., Lee, H., Gehrig, P., Gstaiger, M., and Aebersold, R. (2007) Quantitative proteomic analysis of protein complexes: Concurrent identification of interactors and their state of phosphorylation. Mol Cell Proteomics23, 23.

    Google Scholar 

  26. Steen, H., Jebanathirajah, J. A., Rush, J., Morrice, N., and Kirschner, M. W. (2006) Phosphorylation analysis by mass spectrometry: myths, facts, and the consequences for qualitative and quantitative measurements. Mol Cell Proteomics5, 172–81.

    Article  CAS  Google Scholar 

  27. Bantscheff, M., Boesche, M., Eberhard, D., Matthieson, T., Sweetman, G., and Kuster, B. (2008) Robust and sensitive iTRAQ quantification on an LTQ Orbitrap mass spectrometer. Mol Cell Proteomics7, 1702–13.

    Article  CAS  Google Scholar 

  28. Guo, T., Gan, C. S., Zhang, H., Zhu, Y., Kon, O. L., and Sze, S. K. (2008) Hybridization of Pulsed-Q Dissociation and Collision-Activated Dissociation in Linear Ion Trap Mass Spectrometer for iTRAQ Quantitation. Journal of Proteome Research7, 4831–4840.

    Article  CAS  Google Scholar 

  29. Griffin, T. J., Xie, H., Bandhakavi, S., Popko, J., Mohan, A., Carlis, J. V., and Higgins, L. (2007) iTRAQ reagent-based quantitative proteomic analysis on a linear ion trap mass spectrometer. J Proteome Res6, 4200–9.

    Article  CAS  Google Scholar 

  30. Olsen, J. V., de Godoy, L. M., Li, G., Macek, B., Mortensen, P., Pesch, R., Makarov, A., Lange, O., Horning, S., and Mann, M. (2005) Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics4, 2010–21.

    Article  CAS  Google Scholar 

  31. Boehm, A. M., Putz, S., Altenhofer, D., Sickmann, A., and Falk, M. (2007) Precise protein quantification based on peptide quantification using iTRAQ. BMC Bioinformatics8, 214.

    Article  CAS  Google Scholar 

  32. Yu, C. Y., Tsui, Y. H., Yian, Y. H., Sung, T. Y., and Hsu, W. L. (2007) The Multi-Q web server for multiplexed protein quantitation. Nucleic Acids Res35, W707-12.

    Article  Google Scholar 

  33. Shadforth, I. P., Dunkley, T. P., Lilley, K. S., and Bessant, C. (2005) i-Tracker: for quantitative proteomics using iTRAQ. BMC Genomics6, 145.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.M.E.J. would like to thank Yong-Xi Chen (Jiaotong University, Shanghai) and Rod Watson (Applied Biosystems) for useful discussions. A.M.E.J. is funded by the Gatsby Charitable Foundation and T.S.N. by a BBSRC David Phillips Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra M. E. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jones, A.M.E., Nühse, T.S. (2011). Phosphoproteomics Using iTRAQ. In: Dissmeyer, N., Schnittger, A. (eds) Plant Kinases. Methods in Molecular Biology, vol 779. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-61779-264-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-264-9_17

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-61779-263-2

  • Online ISBN: 978-1-61779-264-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics