Skip to main content

The Novel Role of Cathepsin L for Neuropeptide Production Illustrated by Research Strategies in Chemical Biology with Protease Gene Knockout and Expression

  • Protocol
  • First Online:
Proprotein Convertases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 768))

Abstract

Neuropeptides are essential for cell–cell communication in the nervous and endocrine systems. Production of active neuropeptides requires proteolytic processing of proneuropeptide precursors in secretory vesicles that produce, store, and release neuropeptides that regulate physiological functions. This review describes research strategies utilizing chemical biology combined with protease gene knockout and expression to demonstrate the key role of cathepsin L for production of neuropeptides in secretory vesicles. Cathepsin L was discovered using activity-based probes and mass spectrometry to identify proenkephalin cleaving activity as cathepsin L. Significantly, in vivo protease gene knockout and expression approaches illustrate the key role of cathepsin L for neuropeptide production. Notably, cathepsin L is colocalized with neuropeptide secretory vesicles, the major site of proteolytic processing of proneuropeptides to generate active neuropeptides. Cathepsin L participates in producing opioid neuropeptides consisting of enkephalin, β-endorphin, and dynorphin, as well as in generating the POMC-derived peptide hormones ACTH and α-MSH. In addition, NPY, CCK, and catestatin neuropeptides utilize cathepsin L for their biosynthesis. The role of cathepsin L for neuropeptide production indicates its unique biological role in secretory vesicles, which contrasts with its role in lysosomes for protein degradation. Interesting evaluations of protease gene knockout studies in mice that lack cathepsin L compared to the PC1/3 and PC2 (PC, prohormone convertase) indicate the significant role of cathepsin L in neuropeptide production. Thus, dual cathepsin L and prohormone convertase protease pathways participate in neuropeptide production. These recent new findings indicate cathepsin L as a novel ‘proprotein convertase’ for production of neuropeptides that mediate cell–cell communication in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Law, P. Y., Wong, Y. H., and Loh, H. H. (2000) Molecular mechanisms and regulation of opioid receptor signaling Annu Rev Pharmacol Toxicol 40, 389–430.

    Article  PubMed  CAS  Google Scholar 

  2. Snyder, S. H., and Pasternak, G. W. (2003) Historical review: Opioid receptors Trends Pharmacol Sci 24, 198–205.

    Article  PubMed  CAS  Google Scholar 

  3. Frohman, L. A. (1995) Diseases of the anterior pituitary. In: Endocrinology and Metabolism, Third Edition, P. Felig, J. D. Baxter, and L. A. Frohman, eds. New York, NY: McGraw-Hill. Health Professions Division, pp. 293–7.

    Google Scholar 

  4. Steiner, R. A., Hohmann, J. G., Holmes, A., Wrenn, C. C., Cadd, G., Jureus, A., Clifton, D. K., Luo, M., Gutshall, M., Ma, S. Y., Mufson, E. J., and Crawley, J. N. (2001) Galanin transgenic mice display cognitive and neurochemical deficits characteristic of Alzheimer’s disease Proc Natl Acad Sci USA 98, 4184–9.

    Article  PubMed  CAS  Google Scholar 

  5. Gehlert, D. R. (1999) Role of hypothalamic neuropeptide Y in feeding and obesity Neuropeptides 33, 329–38.

    Article  PubMed  CAS  Google Scholar 

  6. Wieland, H. A., Hamilton, B. S., Krist, B., and Doods, H. N. (2000) The role of NPY in metabolic homeostasis: Implications for obesity therapy Expert Opin Investig Drugs 9, 1327–46.

    Article  PubMed  CAS  Google Scholar 

  7. Hook, V., Funkelstein, L., Lu, D., Bark, S., Wegrzyn, J., and Hwang, S. R. (2008) Proteases for processing proneuropeptides into peptide neurotransmitters and hormones Annu Rev Pharmacol Toxicol 48, 393–423.

    Article  PubMed  CAS  Google Scholar 

  8. Steiner, D. F. (1998) The proprotein convertases Curr Opin Chem Biol 2, 31–9.

    Article  PubMed  CAS  Google Scholar 

  9. Seidah, N. G., and Prat, A. (2002) Precursor convertases in the secretory pathway, cytosol and extracellular milieu Essays Biochem 38, 79–94.

    PubMed  CAS  Google Scholar 

  10. Yasothornsrikul, S., Greenbaum, D., Medzihradszky, K. F., Toneff, T., Bundey, R., Miller, R., Schilling, B., Petermann, I., Dehnert, J., Logvinova, A., Goldsmith, P., Neveu, J. M., Lane, W. S., Gibson, B., Reinheckel, T., Peters, C., Bogyo, M., and Hook, V. (2003) Cathepsin L in secretory vesicles functions as a prohormone-processing enzyme for production of the enkephalin peptide neurotransmitter Proc Natl Acad Sci USA 100, 9590–5.

    Article  PubMed  CAS  Google Scholar 

  11. Hwang, S. R., Garza, C., Mosier, C., Toneff, T., Wunderlich, E., Goldsmith, P., and Hook, V. (2007) Cathepsin L expression is directed to secretory vesicles for enkephalin neuropeptide biosynthesis and secretion J Biol Chem 282, 9556–63.

    Article  PubMed  CAS  Google Scholar 

  12. Funkelstein, L., Toneff, T., Hwang, S. R., Reinheckel, T., Peters, C., and Hook, V. (2008) Cathepsin L participates in the production of neuropeptide Y in secretory vesicles, demonstrated by protease gene knockout and expression J Neurochem 106, 384–91.

    Article  PubMed  CAS  Google Scholar 

  13. Funkelstein, L., Toneff, T., Hwang, S. R., Beuschlein, F., Lichtenauer, U. D., Reinheckel, T., Peters, C., and Hook, V. (2008) Major role of cathepsin L for producing the peptide hormones ACTH, beta-endorphin, and alpha-MSH, illustrated by protease gene knockout and expression J Biol Chem 83, 35652–9.

    Article  Google Scholar 

  14. Beinfeld, M. C., Funkelstein, L., Foulon, T., Cadel, S., Kitagawa, K., Toneff, T., Reinheckel, T., Peters, C., and Hook, V. (2009) Cathepsin L plays a major role in cholecystokinin production in mouse brain and in pituitary AtT-20 cells: Protease gene knockout and inhibitor studies Peptides 30, 1882–991.

    Article  PubMed  CAS  Google Scholar 

  15. Minokadeh, A., Funklestein, L., Toneff, T., Hwang, S. R., Reinheckel, T., Peters, C., Zadina, J., and Hook, V. (2010) Cathepsin L participates in dynorphin neuropeptide production in brain cortex, illustrated by protease gene knockout and expression Mol Cell Neurosci 43, 98–107.

    Article  PubMed  CAS  Google Scholar 

  16. Biswas, N., Rodriquez-Flores, J. L., Courel, M., Gayen, J. R., Vaingankar, S. M., Mahata, M., Torpey, J. W., Taupenot, L., O’Connor, D. T., and Mahata, S. K. (2009) Cathepsin L colocalizes with chromogranin A I chromaffin vesicles to generate active peptides Endocrinology 150, 3547–57.

    Article  PubMed  CAS  Google Scholar 

  17. Yasothornsrikul, S., Toneff, T., Hwang, S. R., and Hook, V. Y. H. (1998) Arginine and lysine aminopeptidase activities in chromaffin granules of bovine adrenal medulla: Relevance to prohormone processing J Neurochem 70, 153–63.

    Article  PubMed  CAS  Google Scholar 

  18. Hwang, S. R., O’Neill, A., Bark, S., Foulon, T., and Hook, V. (2007) Secretory vesicle aminopeptidase B related to neuropeptide processing: Molecular identification and subcellular localization to enkephalin- and NPY-containing chromaffin granules J Neurochem 100, 1340–50.

    Article  PubMed  CAS  Google Scholar 

  19. Azaryan, A. V., and Hook, V. Y. H. (1994) Unique cleavage specificity of ‘prohormone thiol protease’ related to proenkephalin processing FEBS Lett 341, 197–202.

    Article  PubMed  CAS  Google Scholar 

  20. Fricker, L. D. (1988) Carboxypeptidase E Annu Rev Physiol 50, 309–21.

    Article  PubMed  CAS  Google Scholar 

  21. Hook, V. Y. H., and Yasothornsrikul, S. (1998) Carboxypeptidase and aminopeptidase proteases in pro-neuropeptide processing. In: Proteolytic and Cellular Mechanisms in Prohormone and Proprotein Processing, V. Y. H. Hook, ed. Austin, TX: Landes Bioscience Publishers, pp. 121–40.

    Google Scholar 

  22. Yasothornsrikul, S., Aaron, W., Toneff, T., and Hook, V. Y. (1999) Evidence for the proenkephalin processing enzyme prohormone thiol protease (PTP) as a multicatalytic cysteine protease complex: Activation by glutathione localized to secretory vesicles Biochemistry 38, 7421–30.

    Article  PubMed  CAS  Google Scholar 

  23. Cravatt, B. F., Wright, A. R., and Kozarich, J. W. (2008) Activity-based protein profiling: From enzyme chemistry to proteomic chemistry Annu Rev Biochem 77, 383–414.

    Article  PubMed  CAS  Google Scholar 

  24. Wiest, R., Jurzik, L., Herold, T., Straub, R. H., and Scholmerich, J. (2007) Role of NPY for vasoregulation in the splanchnic circulation during portal hypertension Peptides 28, 396–404.

    Article  PubMed  CAS  Google Scholar 

  25. Akil, H., Owens, C., Gutstein, H., Taylor, L., Currran, E., and Watson, S. (1998) Endogenous opioids: Overview and current issues Drug Alcohol Depend 51, 127–40.

    Article  PubMed  CAS  Google Scholar 

  26. Wang, Z., Gardell, L. W., Ossipov, M. H., Vanderah, T. W., Brennan, M. B., Hochgeschwender, U., Hruby, V. J., Malan, T. P., Lai, J., and Porreca, F. (2001) Pronociceptive actions of dynorphin maintain chronic neuropathic pain J Neurosci 21, 1779–86.

    PubMed  CAS  Google Scholar 

  27. Shippenberg, T. S., Zapata, A., and Chefer, V. I. (2007) Dynorphin and the pathophysiology of drug addiction Pharmacol Therapeut 116, 306–21.

    Article  CAS  Google Scholar 

  28. Mahata, S. K., Mahata, M., Fung, M. M., and O’Connor, D. T. (2010) Catestatin: A multifunctional peptide from chromogranin A Regul Pept [Epub ahead of print].

    Google Scholar 

  29. Vaingankar, S. M., Li, Y., Biswas, N., Gayen, J., Choksi, S., Rao, F., Zielger, M. G., Mahata, S. K., and O’Connor, D. T. (2010) Effects of chromogranin A deficiency and excess in vivo: Biphasic blood pressure and catecholamine responses J Hypertens [Epub ahead of print].

    Google Scholar 

  30. Ansorge, S., Kirschke, H., and Friedrich, K. (1977) Conversion of proinsulin into insulin by cathepsins B and L from rat liver lysosomes Acta Biol Med Ger 36, 1723–7.

    PubMed  CAS  Google Scholar 

  31. Yokota, S., Nishimura, Y., and Kato, K. (1988) Localization of cathepsin L in rat kidney revealed by immunoenzyme and immunogold techniques Histochemistry 90, 277–83.

    Article  PubMed  CAS  Google Scholar 

  32. Ryvnyak, V. V., Ryvnyak, E. I., and Tudos, R. V. (2004) Electron histochemical localization of cathepsin L in the liver Bull Exp Biol Med 137, 90–1.

    Article  PubMed  CAS  Google Scholar 

  33. Waguri, S., Sato, N., Watanabe, T., Ishidoh, K., Kominami, E., Sato, K., and Uchiyama, Y. (1995) Cysteine proteinases in GH4C1 cells, a rat pituitary tumor cell line, are secreted by the constitutive and regulated secretory pathways Eur J Cell Biol 67, 308–18.

    PubMed  CAS  Google Scholar 

  34. Collette, J., Bocock, J. P., Ahn, K., Chapman, R. L., Godbold, G., Yeyeodu, S., and Erickson, A. H. (2004) Biosynthesis and alternate targeting of the lysosomal cysteine protease cathepsin L Int Rev Cytol 241, 1–51.

    Article  PubMed  Google Scholar 

  35. Fukuda, M. (1991) Lysosomal membrane glycoproteins. Structure, biosynthesis, and intracellular trafficking J Biol Chem 266, 21327–30.

    PubMed  CAS  Google Scholar 

  36. Hook, V., Funkelstein, L., Toneff, T., Mosier, C., and Hwang, S. R. (2009) Hyman pituitary contains dual cathepsin L and prohormone convertase processing pathway components involved in converting POMC into the peptide hormones ACTH, alpha-MSH, and beta-endorphin Endocrine 35, 429–37.

    Article  PubMed  CAS  Google Scholar 

  37. Hiwasa, T., and Sakiyama, S. (1996) Nuclear localization of procathepsin L/MEP in ras-transformed mouse fibroblasts Cancer Lett 99, 87–91.

    Article  PubMed  CAS  Google Scholar 

  38. Duncan, E. M., Muratore-Schroeder, T. L., Cook, R. G., Garcia, B. A., Shabanowitz, J., Hunt, D. F., and Allis, C. D. (2008) Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation Cell 135, 284–94.

    Article  PubMed  CAS  Google Scholar 

  39. Hook, V., Funkelstein, L., Toneff, T., Mosier, C., and Hwang, S. R. (2009) Human pituitary contains dual cathepsin L and prohormone convertase processing pathway components involved in converting POMC into the peptide hormones ACTH, alpha-MSH, and beta-endorphin Endocrine 35, 429–37.

    Article  PubMed  CAS  Google Scholar 

  40. Fugere, M., and Day, R. (2005) Cutting back on pro-protein convertases: The latest approaches to pharmacological inhibition Trends Pharmacol Sci 26, 294–301.

    Article  PubMed  CAS  Google Scholar 

  41. Scamuffa, N., Calvo, F., Chretien, M., Seidah, N. G., and Khatib, A. M. (2006) Proprotein convertases: Lessons from knockouts FASEB J 20, 1954–63.

    Article  PubMed  CAS  Google Scholar 

  42. Thomas, G. (2002) Furin at the cutting edge: From protein traffic to embryogenesis and disease Nature Rev 3, 753–66.

    Article  CAS  Google Scholar 

  43. Hwang, S. R., Stoka, V., Turk, V., and Hook, V. Y. (2005) The novel bovine serpin endopin 2C demonstrates selective inhibition of the cysteine protease cathepsin L compared to the serine protease elastase, in cross-class inhibition Biochemistry 44, 7757–67.

    Article  PubMed  CAS  Google Scholar 

  44. Hook, V. Y. H., Sei, C., Yasothornsrikul, S., Toneff, T., Kang, Y. -H., Efthimiopoulos, S. et al. (1999) The kunitz protease inhibitor form of the amyloid precursor protein (KPI/APP) inhibits the proneuropeptide processing enzyme prohormone thiol protease (PTP). Colocalization of KPI/APP and PTP in secretory vesicles J Biol Chem 274, 3165–72.

    Article  PubMed  CAS  Google Scholar 

  45. Leonardi, A., Turk, B., and Turk, V. (1996) Inhibition of cathepsins L and S by tefins and cystatins Bio Chem Hoppe Seyler 377, 319–21.

    CAS  Google Scholar 

  46. Basak, A., Koch, P., Dupelle, M., Fricker, L. D., Devi, L. A. et al. (2001) Inhibitory specificity and potency of proSAAS-derived peptides toward proprotein convertase 1 J Biol Chem 276, 32720–8.

    Article  PubMed  CAS  Google Scholar 

  47. Fortenberry, Y., Liu, J., and Lindberg, I. (1999) The role of the 7B2 CT peptide in the inhibition of prohormone convertase 2 in endocrine cell lines J Neurochem 73, 994–1003.

    Article  PubMed  CAS  Google Scholar 

  48. Seidah, N. G., Khatib, A. M., and Prat, A. (2006) The proprotein convertases and their implication in sterol and/or lipid metabolism Biol Chem 387, 871–7.

    Article  PubMed  CAS  Google Scholar 

  49. Bassi, D. E., Fu, J., Lopez de Cicco, R., and Klein-Szanto, A. J. (2005) Proprotein convertases: “master switches” in the regulation of tumor growth and progression Mol Carcinogen 44, 151–61.

    Article  CAS  Google Scholar 

  50. Stawowy, P., and Fleck, E. (2005) Proprotein convertases furin and PC5: Targeting atherosclerosis and restenosis at multiple levels J Molec Med 83, 865–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate support of this research by grants to V. Hook from the National Institutes of Health. The authors also appreciate scientific advice by Dr. Shin-Rong Hwang and technical assistance by Mr. Thomas Toneff at the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivian Hook .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Funkelstein, L., Hook, V. (2011). The Novel Role of Cathepsin L for Neuropeptide Production Illustrated by Research Strategies in Chemical Biology with Protease Gene Knockout and Expression. In: Mbikay, M., Seidah, N. (eds) Proprotein Convertases. Methods in Molecular Biology, vol 768. Humana Press. https://doi.org/10.1007/978-1-61779-204-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-204-5_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-203-8

  • Online ISBN: 978-1-61779-204-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics