Skip to main content

Integrative Food Grade Expression System for Lactic Acid Bacteria

  • Protocol
  • First Online:
Strain Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 765))

Abstract

Lactobacillus acidophilus NCFM is a probiotic microbe with the ability to survive passage to the ­gastrointestinal tract, interact intimately with the host and induce immune responses. The genome of NCFM has been determined and the bacterium is genetically accessible. Therefore, L. acidophilus has excellent potential for use as a vaccine delivery vehicle to express antigens at mucosal surfaces. Plasmids, commonly used to carry antigen encoding genes, are inherently unstable and require constant selection by antibiotics, which can be problematic for in vivo studies and clinical trials. Chromosomal expression of gene cassettes encoding antigens offers enhanced genetic stability by eliminating requirements for marker selection. This work illustrates the integration and inducible expression of the reporter gene gusA3, ­encoding a β-glucuronidase (GusA3), in the L. acidophilus chromosome. A previously described upp-counterselectable gene replacement system was used to direct insertion of the gusA3 gene into an intergenic chromosomal location downstream of lacZ (LBA1462), encoding a β-galactosidase. The transcriptional activity of integrated gusA3 was evaluated by GUS activity assays using 4-methyl-umbelliferyl-β-d-glucuronide (MUG) and was determined to be one to two orders of magnitude higher than the GusA3-negative parent, NCK1909. The successful chromosomal integration and expression of GusA3 demonstrate the potential of this method for higher levels of inducible gene expression in L. acidophilus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanders M. E., and Klaenhammer T. R. (2001) Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J. Dairy Sci. 84, 319–331.

    Article  PubMed  CAS  Google Scholar 

  2. Altermann E., Russell W. M., Azcarate-Peril M. A., Barrangou R., Buck B. L., McAuliffe O., Souther N., Dobson A., Duong T., Callanan M., Lick S., Hamrick A., Cano R., and Klaenhammer T. R. (2005) Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc. Natl. Acad. Sci. U.S.A. 102, 3906–3912.

    Article  PubMed  CAS  Google Scholar 

  3. Wells J. M., and Mercenier A. (2008) Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat. Rev. Microbiol. 6, 349–362.

    Article  PubMed  CAS  Google Scholar 

  4. Russell W. M., and Klaenhammer T. R. (2001) Efficient system for directed integration into the Lactobacillus acidophilus and Lactobacillus gasseri chromosomes via homologous recombination. Appl. Environ. Microbiol. 67, 4361–4364.

    Article  PubMed  CAS  Google Scholar 

  5. Goh Y. J., Azcarate-Peril M. A., O’Flaherty S., Durmaz E., Valence F., Jardin J., Lortal S., and Klaenhammer T. R. (2009) Development and application of a upp-based counterselective gene replacement system for the study of the S-layer protein SlpX of Lactobacillus acidophilus NCFM. Appl. Environ. Microbiol. 75, 3093–3105.

    Article  PubMed  CAS  Google Scholar 

  6. Maguin E., Duwat P., Hege T., Ehrlich D., and Gruss A. (1992) New thermosensitive plasmid for gram-positive bacteria. J. Bacteriol. 174, 5633–5638.

    PubMed  CAS  Google Scholar 

  7. Duong T., Miller M. J., Barrangou R., Azcarate-Peril M. A., and Klaenhammer T. R. (2011) Construction of vectors for inducible and ­constitutive gene expression in Lactobacillus, Microbial Biotechnology. 4, 357–367.

    Google Scholar 

  8. Law J., Buist G., Haandrikman A., Kok J., Venema G., and Leenhouts K. (1995) A ­system to generate chromosomal mutations in Lactococcus lactis which allows fast ­analysis of targeted genes. J. Bacteriol. 177, 7011–7018.

    PubMed  CAS  Google Scholar 

  9. Hanahan D. (1985) Techniques for transformation of E. coli, in DNA cloning: a practical approach (Glover, D. M., Ed.), pp 109–135, IRL Press Ltd., Oxford, England.

    Google Scholar 

  10. Luchansky J. B., Kleeman E. G., Raya R. R., and Klaenhammer T. R. (1989) Genetic transfer systems for delivery of plasmid deoxyribonucleic acid to Lactobacillus acidophilus ADH: conjugation, electroporation, and transduction. J. Dairy Sci. 72, 1408–1417.

    Article  PubMed  CAS  Google Scholar 

  11. Wei M.Q., Rush C. M., Norman J. M., Hafner L. M., Epping R. J., and Timms P. (1995) An improved method for the transformation of Lactobacillus strains using electroporation. J. Microbiol. Methods 21, 97–109.

    Article  Google Scholar 

  12. Walker D. C., Aoyama K., and Klaenhammer T. R. (1996) Electrotransformation of Lactobacillus acidophilus group A1. FEMS Microbiol. Lett. 138, 233–237.

    Article  PubMed  CAS  Google Scholar 

  13. Kimmel S. A., and Roberts R. F. (1998) Development of a growth medium suitable for exopolysaccharide production by Lactobacillus delbrueckii ssp. bulgaricus RR. Int. J. Food Microbiol. 40, 87–92.

    Article  CAS  Google Scholar 

  14. Sambrook J., Fritsch E. F., and Maniatis T. (1989) Molecular Cloning, A Laboratory Manual, Vol. 1, 2 ed., Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  15. Russell W. M., and Klaenhammer T. R. (2001) Identification and cloning of gusA, encoding a new beta-glucuronidase from Lactobacillus gasseri ADH. Appl. Environ. Microbiol. 67, 1253–1261.

    Article  PubMed  CAS  Google Scholar 

  16. Barrangou R., Altermann E., Hutkins R., Cano R., and Klaenhammer T. R. (2003) Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. Proc. Natl. Acad. Sci. U.S.A. 100, 8957–8962.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the North Carolina Dairy Foundation and Danisco USA, Inc. (Madison, WI). GD was ­supported by an NIH-Molecular Biotechnology Training Fellowship, and an IFT Graduate Scholarship. We are grateful to S. O’Flaherty, R. Sanozky-Dawes, E. Pfeiler, E. Durmaz, and J. Schroeter for comments and insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd R. Klaenhammer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Douglas, G.L., Goh, Y.J., Klaenhammer, T.R. (2011). Integrative Food Grade Expression System for Lactic Acid Bacteria. In: Williams, J. (eds) Strain Engineering. Methods in Molecular Biology, vol 765. Humana Press. https://doi.org/10.1007/978-1-61779-197-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-197-0_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-196-3

  • Online ISBN: 978-1-61779-197-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics