Skip to main content

In Vitro and In Vivo Methods for Assessing FcRn-Mediated Reverse Transcytosis Across the Blood–Brain Barrier

  • Protocol
  • First Online:
Permeability Barrier

Abstract

The neonatal Fc receptor, FcRn, mediates endocytic recycling pathway that prevents degradation of IgG and is expressed in most endothelial cells. The blood–brain barrier (BBB), formed by brain endothelial cells sealed with tight junctions, restricts transport of IgG from the blood to the brain. In contrast, it has been suggested that IgG undergoes efflux from the brain parenchyma via reverse transcytosis across the BBB mediated by FcRn. The fast elimination of therapeutic antibodies from the brain via this route may limit their therapeutic potency. In vitro and in vivo methods described in this chapter were developed to facilitate research into mechanisms and dynamics of brain efflux of compounds, including FcRn-mediated reverse transcytosis across the BBB. The in vitro model uses immortalized adult rat brain endothelial cells which express high levels of FcRn. In vivo models use Prospective optical imaging to measure the clearance rate of intracerebrally injected FcRn-transported molecules tagged with near-infrared fluorescent probes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13.

    Article  PubMed  CAS  Google Scholar 

  2. Gaillard PJ, Visser CC, de Boer AG (2005) Targeted delivery across the blood-brain barrier. Expert Opin Drug Deliv 2:299–309.

    Article  PubMed  CAS  Google Scholar 

  3. Boado RJ, Hui EK, Lu JZ, Zhou QH, Pardridge WM (2010) Selective targeting of a TNFR decoy receptor pharmaceutical to the primate brain as a receptor-specific IgG fusion protein. J Biotechnol 146:84–91.

    Article  PubMed  CAS  Google Scholar 

  4. Zhang Y, Pardridge WM (2001) Mediated efflux of IgG molecules from brain to blood across the blood-brain barrier. J Neuroimmunol 114:168–172.

    Article  PubMed  CAS  Google Scholar 

  5. Thorne RG, Nicholson C (2006) In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. PNAS 103:5567–5572.

    Article  PubMed  CAS  Google Scholar 

  6. Weller RO, Galea I, Carare RO, Minagar A (2009) Pathophysiology of the lymphatic drainage of the central nervous system: Implications for pathogenesis and therapy of multiple sclerosis. J Pathophysiology (doi: 10.1015/j.pathophysiol.2009.10.007).

    Google Scholar 

  7. Abbot JN (2004) Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochemistry Inter-national 45:545–552

    Article  Google Scholar 

  8. Schlachetzki F, Zhu C, Pardridge WM (2002) Expression of the neonatal Fc receptor (FcRn) at the blood-brain barrier. J Neurochem 81:203–206.

    Article  PubMed  CAS  Google Scholar 

  9. Leach JL, Sedmak DD, Osborne JM, Rahill B, Lairmore MD, Anderson CL (1996) Isolation from human placenta of the IgG transporter, FcRn, and localization to the syncytiotrophoblast: implications for maternal-fetal antibody transport. J Immunol 157:3317–3322.

    PubMed  CAS  Google Scholar 

  10. Roopenian DC, Christianson GJ, Sproule TJ, Brown AC, Akilesh S, Jung N, Petkova S, Avanessian L, Choi EY, Shaffer DJ, Eden PA, Anderson CL (2003) The MHC class I-like IgG receptor controls perinatal IgG transport, IgG homeostasis, and fate of IgG-Fc-coupled drugs. J Immunol 170:3528–3533.

    PubMed  CAS  Google Scholar 

  11. Yoshida M, Claypool SM, Wagner JS, Mizoguchi E, Mizoguchi A, Roopenian DC, Lencer WI, Blumberg RS (2004) Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity 20:769–783.

    Article  PubMed  CAS  Google Scholar 

  12. Ober RJ, Martinez C, Lai X, Zhou J, Ward ES (2004) Exocytosis of IgG as mediated by the receptor, FcRn: an analysis at the single-molecule level. PNAS 101:11076–11081.

    Article  PubMed  CAS  Google Scholar 

  13. Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7:715–725.

    Article  PubMed  CAS  Google Scholar 

  14. He W, Ladinsky MS, Huey-Tubman KE, Jensen GJ, McIntosh JR, Björkman PJ (2008) FcRn-mediated antibody transport across epithelial cells revealed by electron tomography. Nature 455:542–546.

    Article  PubMed  CAS  Google Scholar 

  15. Garg A, Balthasar JP (2009) Investigation of the influence of FcRn on the distribution of IgG to the brain. AAPS J 11:553–557.

    Article  PubMed  CAS  Google Scholar 

  16. Deane R, Sagare A, Hamm K, Parisi M, LaRue B, Guo H, Wu Z, Holtzman DM, Zlokovic BV (2005) IgG-assisted age-dependent clearance of Alzheimer’s amyloid beta peptide by the blood-brain barrier neonatal Fc receptor. J Neurosci 25:11495–11503.

    Article  PubMed  CAS  Google Scholar 

  17. Garberg P, Ball M, Borg N, Cecchelli R, Fenart L, Hurst RD, Lindmark T, Mabondzo A, Nilsson JE, Raub TJ, Stanimirovic D, Terasaki T, Oberg JO, Osterberg T (2005) In vitro models for the blood-brain barrier. Toxicol In Vitro 19:299–334.

    Article  PubMed  CAS  Google Scholar 

  18. Muruganandam A, Herx LM, Monette R, Durkin JP, Stanimirovic DB (1997) Development of immortalized human cerebromicrovascular endothelial cell line as an in vitro model of the human blood-brain barrier. FASEB J 11:1187–1197.

    PubMed  CAS  Google Scholar 

  19. Cecchelli R, Dehouck B, Descamps L, Fenart L, Buée-Scherrer VV, Duhem C, Lundquist S, Rentfel M, Torpier G, Dehouck MP (1999) In vitro model for evaluating drug transport across the blood-brain barrier. Adv Drug Deliv Rev 36:165–178.

    Article  PubMed  CAS  Google Scholar 

  20. Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. 5th Edition, Elsevier Academic Press, Amsterdam Boston.

    Google Scholar 

  21. Abulrob A, Brunette E, Slinn J, Baumann E, Stanimirovic D (2007) In vivo time domain optical imaging of renal ischemia-reperfusion injury: discrimination based on fluorescence lifetime. Mol Imaging 6:304–314.

    PubMed  CAS  Google Scholar 

  22. Gumbleton M, Audus KL (2001) Progress and limitations in the use of in vitro cell ­cultures to serve as a permeability screen for the blood-brain barrier. J Pharm Sci 90:1681–1698.

    Article  PubMed  CAS  Google Scholar 

  23. Colgan OC, Collins NT, Ferguson G, Murphy RP, Birney YA, Cahill PA, Cummins PM (2008) Influence of basolateral condition on the regulation of brain microvascular endothelial tight junction properties and barrier function. Brain Res 1193:84–92.

    Article  PubMed  CAS  Google Scholar 

  24. Frangioni JV (2003) In vivo near-infrared fluorescence imaging Curr Opin Chem Biol 7:626–34.

    Google Scholar 

  25. Andersen JT, Sandlie I (2009) the versatile MHC class-I-related FcRn protects Igg and albumin from degradation: implication for development of new diagnostics and therapeutics. Drug Metab Pharmacokinet 24:318–332.

    Article  PubMed  CAS  Google Scholar 

  26. Chaudhury C, Mehnaz, S, Robinson JM, Hayton WL, Pearl DK, Roopenian DC, Anderson CL (2003) The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J Exp Med 197:315–322.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danica Stanimirovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Caram-Salas, N. et al. (2011). In Vitro and In Vivo Methods for Assessing FcRn-Mediated Reverse Transcytosis Across the Blood–Brain Barrier. In: Turksen, K. (eds) Permeability Barrier. Methods in Molecular Biology, vol 763. Humana Press. https://doi.org/10.1007/978-1-61779-191-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-191-8_26

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-190-1

  • Online ISBN: 978-1-61779-191-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics