Skip to main content

Synchronization of Mammalian Cell Cultures by Serum Deprivation

  • Protocol
  • First Online:
Cell Cycle Synchronization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 761))

Abstract

Mammalian cells are amenable to study the regulation of cell cycle progression in vitro by shifting them into the same phase of the cycle. Procedures to arrest cultured cells in specific phases of the cell cycle may be termed in vitro synchronization. The procedure described here was developed for the study of primary astrocytes and a glioma cell line, but is applicable to other mammalian cells. Its application allows astrocytes to reenter the cell cycle from a state of quiescence (G0), and then, under carefully defined experimental conditions, to move together into subsequent phases such as the G1 and S phases. A number of methods have been established to synchronize mammalian cell cultures, which include physical separation by centrifugal elutriation and mitotic shake off or chemically induced cell cycle arrest. Yet, there are intrinsic limitations associated with these methods. In the present protocol, we describe a simple, reliable, and reversible procedure to synchronize astrocyte and glioma cultures from newborn rat brain by serum deprivation. The procedure is similar, and generally applicable, to other mammalian cells. This protocol consists essentially of two parts: (1) proliferation of astrocytes under optimal conditions in vitro until reaching desired confluence; and (2) synchronization of cultures by serum downshift and arrested in the G0 phase of the cell cycle. This procedure has been extended to the examination of cell cycle control in astroglioma cells and astrocytes from injured adult brain. It has also been employed in precursor cloning studies in developmental biology, suggesting wide applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2002) Molecular biology of the cell. Fourth edition, Chap. 17. The cell cycle and programmed cell death, pp. 983–1026. Garland Science, NY.

    Google Scholar 

  2. Ashihara, T., and Baserga, R. (1979) Cell synchronization. Methods Enzymol. 58, 248–262.

    Article  PubMed  CAS  Google Scholar 

  3. Bartholomew, J. C., Neff, N. T., and Ross, P. A. (1976) Stimulation of WI-38 cell cycle transit: effect of serum concentration and cell density. J. Cell. Physiol. 89, 251–258.

    Article  PubMed  CAS  Google Scholar 

  4. Campbell, A. (1957) Synchronization of cell division. Bacteriol. Rev. 21, 263–272.

    PubMed  CAS  Google Scholar 

  5. Salomoni, P., and Callegari, F. (2010) Cell cycle control of mammalian neural stem cells: putting a speed limit on G1. Trends Cell Biol. 20, 233–243.

    Article  PubMed  CAS  Google Scholar 

  6. Wang, W., Bu, B., Zhang, M., Yu, Z., and Tao, D. (2009) Neural cell cycle dysregulation and central nervous system diseases. Progr Neurobiol. 89, 1–17.

    Article  CAS  Google Scholar 

  7. Pardee, A. B. (1974) A restriction point for control of normal animal cell proliferation. Proc. Natl. Acad. Sci. USA 71, 1286–1290.

    Article  PubMed  CAS  Google Scholar 

  8. Langan, T. J., and Volpe, J. J. (1986) Obligatory relationship between the sterol biosynthetic pathway and DNA synthesis and cell proliferation in glial primary cultures. J. Neurochem. 46, 1283–1291.

    Article  PubMed  CAS  Google Scholar 

  9. Li, V., Kelly, K., Schrot, R., and Langan, T. J. (1996) Cell cycle kinetics and commitment in newborn, adult, and tumoral astrocytes. Brain Res. 96, 138–147.

    Article  CAS  Google Scholar 

  10. Quesney-Huneeus, V., Galick, H. A., Siperstein, M. D., Erickson, S. K., Spencer, T. A., and Nelson, J. A. (1983) The dual role of mevalonate in the cell cycle. J. Biol. Chem. 258, 378–385.

    PubMed  CAS  Google Scholar 

  11. Merrill, G. F. (1998) Cell synchronization. In J. P. Mather and D. Barnes (Eds.), Methods in cell biology, Vol. 57, pp. 229–249. Academic Press, San Diego.

    Google Scholar 

  12. Keyomarsi, K., Sandoval, L., Band, V., and Pardee, A. B. (1991) Synchronization of tumor and normal cells from G1 to multiple cell cycles by lovastatin. Cancer Res. 51, 3602–3609.

    PubMed  CAS  Google Scholar 

  13. Krek, W., and DeCaprio, J. A. (1995) Cell synchronization. Methods Enzymol. 254, 114–124.

    Article  PubMed  CAS  Google Scholar 

  14. Pardee, A. B., and Keyomarsi, K. (1992) Modification of cell proliferation with inhibitors. Curr. Opin. Cell Biol. 4, 186–191.

    Article  PubMed  CAS  Google Scholar 

  15. Langan, T. J., and Slater, M. C. (1991) Quiescent astroglia in long-term primary cultures re-enter the cell cycle and require a nonsterol isoprenoid in late G1. Brain Res. 548, 9–17.

    Article  PubMed  CAS  Google Scholar 

  16. Zieve, G. W., Turnbull, D., Mullins, J. M., and McIntosh, J. R. (1980) Production of large numbers of mitotic mammalian cells by use of the reversible microtubule inhibitor nocodazole. Nocodazole accumulated mitotic cells. Exp. Cell Res. 126, 397–405.

    Article  PubMed  CAS  Google Scholar 

  17. Johnston, D. A., White, R. A., and Barlogie, B. A. (1978) Automatic processing and interpretation of DNA distributions: comparison of several techniques. Comp. Biomed. Res. 11, 393–404.

    Article  CAS  Google Scholar 

  18. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., and Campbell, K. H. S. (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813.

    Article  PubMed  CAS  Google Scholar 

  19. Sanchez, I., Goya, L., Vallerga, A. K., and Firestone, G. L. (1993) Glucocorticoids reversibly arrest rat hepatoma cell growth by inducing an early G1 block in cell cycle progression. Cell Growth Differ. 4, 215–225.

    PubMed  CAS  Google Scholar 

  20. Huberman, J. A. (1981) New views of the biochemistry of eucaryotic DNA replication revealed by aphidicolin, an unusual inhibitor of DNA polymerase alpha. Cell 23, 647–648.

    Article  PubMed  CAS  Google Scholar 

  21. Mitchell, B. F., and Tupper, J. T. (1977) Synchronization of mouse 3T3 and SV40 3T3 cells by way of centrifugal elutriation. Exp. Cell Res. 106, 351–355.

    Article  PubMed  CAS  Google Scholar 

  22. Terasima, T., and Tolmach, L. J. (1963) Growth and nucleic acid synthesis in synchronously dividing populations of HELA cells. Exp. Cell Res. 30, 344–362.

    Article  PubMed  CAS  Google Scholar 

  23. Webber, L. M., and Garson, O. M. (1983) Fluorodeoxyuridine synchronization of bone marrow cultures. Cancer Genet. Cytogenet. 8, 123–132.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Langan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Langan, T.J., Chou, R.C. (2011). Synchronization of Mammalian Cell Cultures by Serum Deprivation. In: Banfalvi, G. (eds) Cell Cycle Synchronization. Methods in Molecular Biology, vol 761. Humana Press. https://doi.org/10.1007/978-1-61779-182-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-182-6_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-181-9

  • Online ISBN: 978-1-61779-182-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics