Skip to main content

Cell Cycle Synchronization for the Purpose of Somatic Cell Nuclear Transfer (SCNT)

  • Protocol
  • First Online:
Cell Cycle Synchronization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 761))

Abstract

Somatic cell nuclear transfer (SCNT) is a technically and biologically challenging procedure during which a differentiated committed nucleus undergoes rapid reprogramming into the totipotent state in a few hours. SCNT can be utilized to generate patient- and disease-specific embryonic stem cell (ESC) lines, which carry great promise in improving our understanding of major disease conditions and hope for better therapies. In this section, we will describe how mouse SCNT is performed and survey the importance of donor cell cycle synchronization and the methods to perform it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jaenisch, R., Hochedlinger, K., Blelloch, R., Yamada, Y., Baldwin, K., and Eggan, K. (2004) Nuclear cloning, epigenetic reprogramming, and cellular differentiation, Cold Spring Harb. Symp. Quant. Biol. 69, 19–27.

    PubMed  CAS  Google Scholar 

  2. Markoulaki, S., Meissner, A., and Jaenisch, R. (2008) Somatic cell nuclear transfer and derivation of embryonic stem cells in the mouse, Methods 45, 101–114.

    Article  PubMed  CAS  Google Scholar 

  3. Shufaro, Y., Lacham-Kaplan, O., Tzuberi, B. Z., McLaughlin, J., Trounson, A., Cedar, H., and Reubinoff, B. E. (2010) Reprogramming of DNA replication timing, Stem Cells 28, 443–449.

    PubMed  CAS  Google Scholar 

  4. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., and Campbell, K. H. (1997) Viable offspring derived from fetal and adult mammalian cells, Nature 385, 810–813.

    Article  PubMed  CAS  Google Scholar 

  5. Wilmut, I., and Paterson, L. (2003) Somatic cell nuclear transfer, Oncol. Res. 13, 303–307.

    PubMed  Google Scholar 

  6. Mitalipov, S. M., Zhou, Q., Byrne, J. A., Ji, W. Z., Norgren, R. B., and Wolf, D. P. (2007) Reprogramming following somatic cell nuclear transfer in primates is dependent upon nuclear remodeling, Hum. Reprod. 22, 2232–2242.

    Article  PubMed  CAS  Google Scholar 

  7. Cibelli, J. B., Lanza, R. P., West, M. D., and Ezzell, C. (2002) The first human cloned embryo. Sci. Am. 286, 44–51.

    Article  PubMed  Google Scholar 

  8. Solter, D. (2000) Mammalian cloning: advances and limitations. Nat. Rev. Genet. 1, 199–207.

    Article  PubMed  CAS  Google Scholar 

  9. Brambrink, T., Hochedlinger, K., Bell, G., and Jaenisch, R. (2006) ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proc. Natl. Acad. Sci. USA 103, 933–938.

    Article  PubMed  CAS  Google Scholar 

  10. Shufaro, Y., and Reubinoff, B. E. (2004) Therapeutic applications of embryonic stem cells. Best Pract. Res. Clin. Obstet. Gynaecol. 18, 909–927.

    Article  PubMed  Google Scholar 

  11. Okita, K., Ichisaka, T., and Yamanaka, S. (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317.

    Article  PubMed  CAS  Google Scholar 

  12. Campbell, K. H., Loi, P., Otaegui, P. J., and Wilmut, I. (1996) Cell cycle co-ordination in embryo cloning by nuclear transfer. Rev. Reprod. 1, 40–46.

    Article  PubMed  CAS  Google Scholar 

  13. Collas, P., Pinto-Correia, C., Ponce de Leon, F. A., and Robl, J. M. (1992) Effect of donor cell cycle stage on chromatin and spindle morphology in nuclear transplant rabbit embryos. Biol. Reprod. 46, 501–511.

    Article  PubMed  CAS  Google Scholar 

  14. Wakayama, T., Perry, A. C., Zuccotti, M., Johnson, K. R., and Yanagimachi, R. (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374.

    Article  PubMed  CAS  Google Scholar 

  15. Chatot, C. L., Ziomek, C. A., Bavister, B. D., Lewis, J. L., and Torres, I. (1989) An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J. Reprod. Fertil. 86, 679–688.

    Article  PubMed  CAS  Google Scholar 

  16. Wells, D. N., Laible, G., Tucker, F. C., Miller, A. L., Oliver, J. E., Xiang, T., Forsyth, J. T., Berg, M. C., Cockrem, K., L’Huillier, P. J., Tervit, H. R., and Oback, B. (2003) Coordination between donor cell type and cell cycle stage improves nuclear cloning efficiency in cattle. Theriogenology 59, 45–59.

    Article  PubMed  CAS  Google Scholar 

  17. Baguisi, A., Behboodi, E., Melican, D. T., Pollock, J. S., Destrempes, M. M., Cammuso, C., Williams, J. L., Nims, S. D., Porter, C. A., Midura, P., Palacios, M. J., Ayres, S. L., Denniston, R. S., Hayes, M. L., Ziomek, C. A., Meade, H. M., Godke, R. A., Gavin, W. G., Overstrom, E. W., and Echelard, Y. (1999) Production of goats by somatic cell nuclear transfer. Nat. Biotechnol. 17, 456–461.

    Article  PubMed  CAS  Google Scholar 

  18. Kues, W. A., Anger, M., Carnwath, J. W., Paul, D., Motlik, J., and Niemann, H. (2000) Cell cycle synchronization of porcine fetal fibroblasts: effects of serum deprivation and reversible cell cycle inhibitors. Biol. Reprod. 62, 412–419.

    Article  PubMed  CAS  Google Scholar 

  19. Dalman, A., Eftekhari-Yazdi, P., Valojerdi, M. R., Shahverdi, A., Gourabi, H., Janzamin, E., Fakheri, R., Sadeghian, F., and Hasani, F. (2010) Synchronizing cell cycle of goat fibroblasts by serum starvation causes apoptosis. Reprod. Domest. Anim., 45: e46–e53. doi: 10.1111/j.1439-0531.2009.01520x

    Google Scholar 

  20. Kurosaka, S., Nagao, Y., Minami, N., Yamada, M., and Imai, H. (2002) Dependence of DNA synthesis and in vitro development of bovine nuclear transfer embryos on the stage of the cell cycle of donor cells and recipient cytoplasts. Biol. Reprod. 67, 643–647.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoel Shufaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Shufaro, Y., Reubinoff, B.E. (2011). Cell Cycle Synchronization for the Purpose of Somatic Cell Nuclear Transfer (SCNT). In: Banfalvi, G. (eds) Cell Cycle Synchronization. Methods in Molecular Biology, vol 761. Humana Press. https://doi.org/10.1007/978-1-61779-182-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-182-6_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-181-9

  • Online ISBN: 978-1-61779-182-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics