Skip to main content

In Silico Prediction of Post-translational Modifications

  • Protocol
  • First Online:
In Silico Tools for Gene Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 760))

Abstract

Methods for predicting protein post-translational modifications have been developed extensively. In this chapter, we review major post-translational modification prediction strategies, with a particular focus on statistical and machine learning approaches. We present the workflow of the methods and summarize the advantages and disadvantages of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaeken J., Carchon H. (2001) Congenital disorders of glycosylation: the rapidly growing tip of the iceberg. Curr Opin Neurol 14, 811–815.

    Article  PubMed  CAS  Google Scholar 

  2. Martin P.T. (2005) The dystroglycanopathies: the new disorders of O-linked glycosylation. Semin Pediatr Neurol 12, 152–158.

    Article  PubMed  Google Scholar 

  3. Cohen, P. (2000) the regulation of protein function by multisite phosphorylation-a 25 year update. Trends Biochem Sci 25, 596–601.

    Article  PubMed  CAS  Google Scholar 

  4. Tyers, M., Jorgensen, P. (1989) Protein and carbohydrate structural analysis of a recombinant soluble CD4 receptor by mass spectrometry. J Biol Chem 264, 21286–21295.

    Google Scholar 

  5. Medzihradszky, K. F. (2008) Characterization of site-specific N-glycosylation. Methods Mol Biol 446, 293–316.

    Article  PubMed  CAS  Google Scholar 

  6. Ingrell, C. R., Miller, M. L., Jensen, O. N., Blom, N. (2007) NetPhosYeast: prediction of protein phosphorylation sites in yeast. Bioinformatics 23, 895–897.

    Article  PubMed  CAS  Google Scholar 

  7. Gupta, R. (2001) Prediction of glycosylation sites in proteomes: from post-translational modifications to protein function. Ph.D. thesis at CBS.

    Google Scholar 

  8. Kim, J. H., Lee, J., Oh, B., et al. (2004) Prediction of phosphorylation sites using SVMs. Bioinformatics 20, 3179–3184.

    Article  PubMed  CAS  Google Scholar 

  9. Plewczynski, D., Tkacz, A., Wyrwicz, L.S., Rychlewski, L. (2005) AutoMotif server: prediction of single residue post-translational modifications in proteins. Bioinformatics 21, 2525–2527.

    Article  PubMed  CAS  Google Scholar 

  10. Plewczynski, D., Tkacz, A., Wyrwicz, L. S., et al. (2008) AutoMotif Server for prediction of phosphorylation sites in proteins using support vector machine: 2007 update. J Mol Model 14, 69–76.

    Article  PubMed  CAS  Google Scholar 

  11. Wong, Y. H., Lee, T.Y., Liang, H. K., et al. (2007) KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns. Nucleic Acids Res 35, W588–594.

    Google Scholar 

  12. Xue, Y., Li, A., Wang, L., Feng, H., Yao, X. (2006) PPSP: prediction of PK-specific phosphorylation site with Bayesian decision theory. BMC Bioinformatics 7, 163.

    Article  PubMed  Google Scholar 

  13. Yoo, P. D., Ho, Y. S., Zhou, B. B., Zomaya, A. Y. (2008) SiteSeek: posttranslational modification analysis using adaptive locality-effective kernel methods and new profiles. BMC Bioinformatics 9, 272.

    Article  PubMed  Google Scholar 

  14. Lee, T. Y., et al. (2006) dbPTM: an information repository of protein post-translational modification. Nucleic Acids Res 34, D622–D627.

    Article  PubMed  CAS  Google Scholar 

  15. Sigrist, C. J., Cerutti, L., Hulo, N., et al. (2002) PROSITE: A documented database using patterns and profiles as motif descriptors. Brief Bioinfo 3, 265–274.

    Article  CAS  Google Scholar 

  16. Kiemer, L., Bendtsen, J. D., Blom, N. (2005) NetAcet: prediction of N-terminal acetylation sites. Bioinformatics 21, 1269–1270.

    Article  PubMed  CAS  Google Scholar 

  17. Johansen, M. B., Kiemer, L., Brunak, S. (2006) Analysis and prediction of mammalian protein glycation. Glycobiology 16, 844–853.

    Article  PubMed  CAS  Google Scholar 

  18. Hansen, J. E., Lund, O., Tolstrup, N., et al. (1998) NetOglyc: Prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconjugate J 15, 115–130.

    Article  CAS  Google Scholar 

  19. Blom, N., Gammeltoft, S., Brunak, S. (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294, 1351–1362.

    Article  PubMed  CAS  Google Scholar 

  20. Chang, W. C., Lee, T. Y., Shien DM, et al. (2009) Incorporating support vector machine for identifying protein tyrosine sulfation sites. J Comput Chem 30, 2526–2537.

    Article  PubMed  CAS  Google Scholar 

  21. http://ca.expasy.org/tools/. Accessed 18 August 2010.

  22. Blom, N., Sicheritz-Pontén, T., Gupta, R., et al. (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4, 1633–1649.

    Article  PubMed  CAS  Google Scholar 

  23. Liu, C. M., Blake, A., Burge, L., et al. (2006) The identification of ion types in tandem mass spectra based on a graph algorithm. J Sci Practical Comput 1, 46–60.

    Google Scholar 

  24. Jung, I., Matsuyama, A., Yoshida, M., Kim, D. (2010) PostMod: sequence based prediction of kinase-specific phosphorylation sites with indirect relationship. BMC Bioinformatics 11(Suppl1), S10.

    Article  PubMed  Google Scholar 

  25. Zhou, F. F., Xue, Y., Chen, G.L., Yao, X. (2004) GPS: a novel group-based phosphorylation predicting and scoring method. Biochem Biophys Res Commun 325(4), 1443–1448.

    Article  PubMed  CAS  Google Scholar 

  26. Na, S., Paek, E. (2009) Prediction of novel modifications by unrestrictive search of tandem mass spectra. J Proteome Res 8, 4418–4427.

    Article  PubMed  CAS  Google Scholar 

  27. Huang, H. D., Lee, T. Y., Tseng, S. W., Horng, J. T. (2005) KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites. Nucleic Acids Res 33, W226–229.

    Google Scholar 

  28. Zhou, C., Bowler, L. D., Feng, J. F. (2008) A machine learning approach to explore the spectra intensity pattern of peptides using tandem mass spectrometry data. BMC Bioinformatics. 9, 325.

    Article  PubMed  Google Scholar 

  29. Webb-Robertson, B. J., Cannon, W. R., Oehmen, C.S., et al. (2008) A support vector machine model for the prediction of proteotypic peptides for accurate mass and time proteomics. Bioinformatics 24, 1503–1509.

    Article  PubMed  CAS  Google Scholar 

  30. Blom, N., Sicheritz-Ponten, T., Gupta, R., et al. (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4, 1633–1649.

    Article  PubMed  CAS  Google Scholar 

  31. Plewczynski, D., Tkacz, A., Wyrwicz, L. S., Rychlewski, L. (2005) AutoMotif server: prediction of single residue post-translational modifications in proteins. Bioinformatics 21, 2525–2527.

    Article  PubMed  CAS  Google Scholar 

  32. Lu, B., Ruse, C., Xu, T., et al. (2007) Automatic validation of phosphopeptide identifications from tandem mass spectra. Anal Chem 79, 1301–1310.

    Article  PubMed  CAS  Google Scholar 

  33. Wong, Y. H., Lee, T. Y., Liang, H. K., et al. (2007) KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns. Nucleic Acids Res 35, W588–594.

    Google Scholar 

  34. Ahmad, I., Hoessli, D. C., Gupta, R., et al. (2007) In silico determination of intracellular glycosylation and phosphorylation sites in human selectins: implications for biological function. J Cell Biochem 100, 1558–1572.

    Article  PubMed  CAS  Google Scholar 

  35. Hansen, J. E., Lund, O., Tolstrup. N., et al. (1998) NetOGlyc: Prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconj J 15, 115–130.

    Article  PubMed  CAS  Google Scholar 

  36. Julenius, K., Mølgaard, A., Gupta, R., Brunak, S. (2005) Prediction, conservation analysis and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15, 153–164.

    Article  PubMed  CAS  Google Scholar 

  37. Gupta, R., Jung, E., Gooley, A. A., et al. (1999) Scanning the available Dictyostelium discoideum proteome for O-linked GlcNAc glycosylation sites using neural networks. Glycobiology 9, 1009–1022.

    Article  PubMed  CAS  Google Scholar 

  38. Hansen, J. E., Lund, O., Engelbrecht, J., et al. (1995) Prediction of O-glycosylation of mammalian proteins: specificity patterns of UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase. Biochem J 308, 801–813.

    PubMed  CAS  Google Scholar 

  39. Julenius, K., Molgaard, A., Gupta, R., Brunak, S. (2005) Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15, 153–164.

    Article  PubMed  CAS  Google Scholar 

  40. Torii, M., Liu, H., Hu, Z. (2009) Support vector machine-based mucin-type o-linked glycosylation site prediction using enhanced sequence feature encoding. Proc AMIA Annu Symp 14, 640–644.

    Google Scholar 

  41. Chen, K., Kurgan, L. A., Ruan, J. (2007) Prediction of flexible/rigid regions from protein sequences using k-spaced amino acid pairs. BMC Struct Biol 7, 25.

    Article  PubMed  Google Scholar 

  42. Hamby, S. E., Hirst, J. D. (2008) Prediction of glycosylation sites using random forests. BMC Bioinformatics 9, 500.

    Article  PubMed  Google Scholar 

  43. Hansen, J. F., Lund, O., Engelbrecht, J., et al. (1995) Prediction of O-glycosylation of mammalian proteins: specificity patterns of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase. Biochem J t3, 801–813.

    Google Scholar 

  44. Mark, R., Holmes, M., C. (2004) Giddings prediction of posttranslational modifications using intact-protein mass spectrometric data. Anal Chem 76, 276–282.

    Article  Google Scholar 

  45. Emanuelsson, O., Nielsen, H., von Heijne, G. (1999) a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8, 978–984.

    Article  PubMed  CAS  Google Scholar 

  46. Puntervoll, P., Linding, R., Gemund, C., Chabanis, D.S. et al. (2003) ELM server: A new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res 31, 3625–3630.

    Article  PubMed  CAS  Google Scholar 

  47. Sigrist, C. J., Cerutti, L., Hulo, N., et al. (2002) PROSITE: A documented database using patterns and profiles as motif descriptors. Brief Bioinfo 3, 265–274.

    Article  CAS  Google Scholar 

  48. Peri, S., Navarro, J., Amanchy, R., Kristiansen, T. et al. (2003) Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 13, 2363–2371.

    Article  PubMed  CAS  Google Scholar 

  49. Garavelli, J. (2003) The RESID Database of Protein Modifications: 2003 developments. Nucleic Acids Res 31, 499–501.

    Article  PubMed  CAS  Google Scholar 

  50. Obenauer, J.C., Cantley, L.C., Yaffe, M.B. (2003) Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 31, 3635–3641.

    Article  PubMed  CAS  Google Scholar 

  51. Saunders, N.F., Brinkworth, R.I., Huber, T., et al. (2008) Predikin and PredikinDB: a computational framework for the prediction of protein kinase peptide specificity and an associated database of phosphorylation sites. BMC Bioinformatics 9, 245.

    Article  PubMed  Google Scholar 

  52. Blom, N., Gammeltoft, S., Brunak, S. (1999) P Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294, 1351–1362.

    Article  PubMed  CAS  Google Scholar 

  53. Blom, N., Sicheritz-Ponten, T. Gupta, R. et al. (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4, 1633–1649.

    Article  PubMed  CAS  Google Scholar 

  54. de Chiara, C., Menon, R.P., Strom, M., et al. (2009) Phosphorylation of S776 and 14-3-3 binding modulate ataxin-1 interaction with splicing factors. PLoS ONE 4, e8372.

    Article  PubMed  Google Scholar 

  55. Eisenhaber, B., Bork, P., Eisenhaber, F. (1998) Sequence properties of GPI-anchored proteins near the omega-site: constraints for the polypeptide binding site of the putative transamidase. Protein Eng 11, 1155–1161.

    Article  PubMed  CAS  Google Scholar 

  56. Cooper, C. A., Gasteiger, E., Packer, N. H. (2001) GlycoMod—a software tool for determining glycosylation compositions from mass spectrometric data. Proteomics 1, 340–349.

    Article  PubMed  CAS  Google Scholar 

  57. Julenius, K., Mlgaard, A., Gupta, R., Brunak, S. (2005) Prediction, conservation analysis and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15, 153–164.

    Article  PubMed  CAS  Google Scholar 

  58. Gupta, R. Jung, E., Gooley, A.A., Williams, K.L., Brunak, S., Hansen, J. (1999) Scanning the available Dictyostelium discoideum proteome for O-linked GlcNAc glycosylation sites using neural networks. Glycobiology 9, 1009–1022.

    Article  PubMed  CAS  Google Scholar 

  59. Gupta, R., Brunak, S. (2002) Prediction of glycosylation across the human proteome and the correlation to protein function. Pacific Symposium on Biocomputing 7, 310–322.

    Google Scholar 

  60. Martinez, A., Traverso, J. A., Valot, B., Ferro, M., Espagne, C., Ephritikhine, G., Zivy, M., Giglione, C., Meinnel, T. (2008) Extent of N-terminal modifications in cytosolic proteins from eukaryotes. Proteomics 8, 2809–2831.

    Article  PubMed  CAS  Google Scholar 

  61. Duckert, P., Brunak, S., Blom, N. (2004) Prediction of proprotein convertase cleavage sites. Protein Eng Design Sel 17, 107–112.

    Article  CAS  Google Scholar 

  62. Blom, N., Hansen, J., Blaas, D., Brunak, S. (1996) Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks. Protein Sci 5, 2203–2216.

    Article  PubMed  CAS  Google Scholar 

  63. Bologna, G., Yvon, C., Duvaud, S., Veuthey, A. L. (2004) N-Terminal myristoylation predictions by ensembles of neural networks. Proteomics 4, 1626–1632.

    Article  PubMed  CAS  Google Scholar 

  64. Xue, Y., Ren, J., Gao, X., Jin, C., Wen, L., Yao, X. (2008) GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics 7, 1598–1608.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunmei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Liu, C., Li, H. (2011). In Silico Prediction of Post-translational Modifications. In: Yu, B., Hinchcliffe, M. (eds) In Silico Tools for Gene Discovery. Methods in Molecular Biology, vol 760. Humana Press. https://doi.org/10.1007/978-1-61779-176-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-176-5_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-175-8

  • Online ISBN: 978-1-61779-176-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics