Skip to main content

Noise in Biological Systems: Pros, Cons, and Mechanisms of Control

  • Protocol
  • First Online:
Yeast Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 759))

Abstract

Genetic regulatory circuits are often regarded as precise machines that accurately determine the level of expression of each protein. Most experimental technologies used to measure gene expression levels are incapable of testing and challenging this notion, as they often measure levels averaged over entire populations of cells. Yet, when expression levels are measured at the single cell level of even genetically identical cells, substantial cell-to-cell variation (or “noise”) may be observed. Sometimes different genes in a given genome may display different levels of noise; even the same gene, expressed under different environmental conditions, may display greater cell-to-cell variability in specific conditions and more tight control in other situations. While at first glance noise may seem to be an undesired property of biological networks, it might be beneficial in some cases. For instance, noise will increase functional heterogeneity in a population of microorganisms facing variable, often unpredictable, environmental changes, increasing the probability that some cells may survive the stress. In that respect, we can speculate that the population is implementing a risk distribution strategy, long before genetic heterogeneity could be acquired. Organisms may have evolved to regulate not only the averaged gene expression levels but also the extent of allowed deviations from such an average, setting it at the desired level for every gene under each specific condition. Here we review the evolving understanding of noise, its molecular underpinnings, and its effect on phenotype and fitness – when it can be detrimental, beneficial, or neutral and which regulatory tools eukaryotic cells may use to optimally control it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagalakshmi, U., Wang, Z., Waern, K., et al. (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320, 1344–1349.

    Article  PubMed  CAS  Google Scholar 

  2. Shalem, O., Dahan, O., Levo, M., et al. (2008) Transient transcriptional responses to stress are generated by opposing effects of mRNA production and degradation. Mol. Syst. Biol. 4, 223.

    Article  PubMed  Google Scholar 

  3. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R., and Weissman, J. S. (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223.

    Article  PubMed  CAS  Google Scholar 

  4. Li, J. B., Levanon, E. Y., Yoon, J. K., et al. (2009) Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 324, 1210–1213.

    Article  PubMed  CAS  Google Scholar 

  5. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., and Leibler, S. (2004) Bacterial persistence as a phenotypic switch. Science 305, 1622–1625.

    Article  PubMed  CAS  Google Scholar 

  6. Nachman, I., Regev, A., and Ramanathan, S. (2007) Dissecting timing variability in yeast meiosis. Cell 131, 544–556.

    Article  PubMed  CAS  Google Scholar 

  7. Feinerman, O., Veiga, J., Dorfman, J. R., Germain, R. N., and Altan-Bonnet, G. (2008) Variability and robustness in T cell activation from regulated heterogeneity in protein levels. Science 321, 1081–1084.

    Article  PubMed  CAS  Google Scholar 

  8. Cohen, A. A., Geva-Zatorsky, N., Eden, E., et al. (2008) Dynamic proteomics of individual cancer cells in response to a drug. Science 322, 1511–1516.

    Article  PubMed  CAS  Google Scholar 

  9. Raser, J. M., and O’Shea, E. K. (2005) Noise in gene expression: origins, consequences, and control. Science 309, 2010–2013.

    Article  PubMed  CAS  Google Scholar 

  10. Thattai, M., and van Oudenaarden, A. (2001) Intrinsic noise in gene regulatory networks. Proc. Natl. Acad. Sci. USA 98, 8614–8619.

    Article  PubMed  CAS  Google Scholar 

  11. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D., and van Oudenaarden A. (2002) Regulation of noise in the expression of a single gene. Nat. Genet. 31, 69–73.

    Article  PubMed  CAS  Google Scholar 

  12. Blake, W. J., Kaern, M., Cantor, C. R., and Collins, J. J. (2003) Noise in eukaryotic gene expression. Nature 422, 633–637.

    Article  PubMed  CAS  Google Scholar 

  13. Sigal, A., Milo, R., Cohen, A., et al. (2006) Dynamic proteomics in individual human cells uncovers widespread cell-cycle dependence of nuclear proteins. Nat. Methods 3, 525–531.

    Article  PubMed  CAS  Google Scholar 

  14. Paulsson, J. (2004) Summing up the noise in gene networks. Nature 427, 415–418.

    Article  PubMed  CAS  Google Scholar 

  15. Cai, L., Friedman, N., and Xie, X. S. (2006) Stochastic protein expression in individual cells at the single molecule level. Nature 440, 358–362.

    Article  PubMed  CAS  Google Scholar 

  16. Rosenberger, R. F., and Hilton, J. (1983) The frequency of transcriptional and translational errors at nonsense codons in the lacZ gene of Escherichia coli. Mol. Gen. Genet. 191, 207–212.

    Article  PubMed  CAS  Google Scholar 

  17. Gordon, A. J, Halliday, J. A., Blankschien, M. D., Burns, P. A, Yatagai, F., and Herman, C. (2009) Transcriptional infidelity promotes heritable phenotypic change in a bistable gene network. PLoS Biol. 24, e44.

    Article  Google Scholar 

  18. Elowitz, M. B., Levine, A. J., Siggia, E. D., and Swain, P. S. (2002) Stochastic gene expression in a single cell. Science 297, 1183–1186.

    Article  PubMed  CAS  Google Scholar 

  19. Raser, J. M., and O'Shea, E. K. (2004) Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814.

    Article  PubMed  CAS  Google Scholar 

  20. Bar-Even, A., Paulsson, J., Maheshri, N., et al. (2006) Noise in protein expression scales with natural protein abundance. Nat. Genet. 38, 636–643.

    Article  PubMed  CAS  Google Scholar 

  21. Newman, J. R., Ghaemmaghami, S., Ihmels, J., et al. (2006) Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441, 840–846.

    Article  PubMed  CAS  Google Scholar 

  22. Huh, W. K., Falvo, J. V., Gerke, L. C., et al. (2003) Global analysis of protein localization in budding yeast. Nature 425, 686–691.

    Article  PubMed  CAS  Google Scholar 

  23. Kussell, E., and Leibler, S. (2005) Phenotypic diversity, population growth, and information in fluctuating environments. Science 309, 2075–2078.

    Article  PubMed  CAS  Google Scholar 

  24. Pedraza, J. M., and van Oudenaarden, A. (2005) Noise propagation in gene networks. Science 307, 1965–1969.

    Article  PubMed  CAS  Google Scholar 

  25. Wang, Y., Liu, C. L., Storey, J. D., Tibshirani, R. J., Herschlag, D., and Brown, P. O. (2002) Precision and functional specificity in mRNA decay. Proc. Natl. Acad. Sci. USA 99, 5860–5865.

    Article  PubMed  CAS  Google Scholar 

  26. Belle, A., Tanay, A., Bitincka, L., Shamir, R., and O'Shea, E. K. (2006) Quantification of protein half-lives in the budding yeast proteome. Proc. Natl. Acad. Sci. USA 103, 13004–13009.

    Article  PubMed  CAS  Google Scholar 

  27. Fraser, H. B., Hirsh, A. E., Giaever, G., Kumm, J., and Eisen, M. B. (2004) Noise minimization in eukaryotic gene expression. PLoS Biol. 2, e137.

    Article  PubMed  Google Scholar 

  28. dos Reis, M., Savva, R., and Wernisch, L. (2004) Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res. 32, 5036–5044.

    Article  PubMed  CAS  Google Scholar 

  29. Gasch, A. P., Spellman, P. T., Kao, C. M., et al. (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell. 11, 4241–4257.

    PubMed  CAS  Google Scholar 

  30. Rodríguez Martínez, M., Soriano, J., Tlusty, T., Pilpel, Y., and Furman, I. (2010) Messenger RNA fluctuations and regulatory RNAs shape the dynamics of a negative feedback loop. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 81, 031924.

    Article  PubMed  Google Scholar 

  31. Murphy, K. F., Balázsi, G., and Collins, J. J. (2007) Combinatorial promoter design for engineering noisy gene expression. Proc. Natl. Acad. Sci. USA 104, 12726–12731.

    Article  PubMed  CAS  Google Scholar 

  32. Blake, W. J., Balázsi, G., Kohanski, M. A., et al. (2006). Phenotypic consequences of promoter-mediated transcriptional noise. Mol. Cell 24, 853–865.

    Article  PubMed  CAS  Google Scholar 

  33. Segal, E., and Widom, J. (2009) What controls nucleosome positions? Trends Genet. 25, 335–343.

    Article  PubMed  CAS  Google Scholar 

  34. Kim, H. D., and O'Shea, E. K. (2008) A quantitative model of transcription factor-activated gene expression. Nat. Struct. Mol. Biol. 15, 1192–1198.

    Article  PubMed  CAS  Google Scholar 

  35. Hornung, G., and Barkai, N. (2008) Noise propagation and signaling sensitivity in biological networks: a role for positive feedback. PLoS Comput. Biol. 4, e8

    Article  PubMed  Google Scholar 

  36. Cağatay, T., Turcotte, M., Elowitz, M. B., Garcia-Ojalvo, J., and Süel GM. (2009) Architecture-dependent noise discriminates functionally analogous differentiation circuits. Cell 139, 512–522.

    Article  PubMed  Google Scholar 

  37. Kafri, R., Levy, M., and Pilpel, Y. (2006) The regulatory utilization of genetic redundancy through responsive backup circuits. Proc. Natl. Acad. Sci. USA 103, 11653–11658.

    Article  PubMed  CAS  Google Scholar 

  38. Kafri, R., Springer, M., and Pilpel, Y. (2009) Genetic redundancy: new tricks for old genes. Cell 136, 389–392.

    Article  PubMed  CAS  Google Scholar 

  39. Hendrickson, D. G., Hogan, D. J., McCullough, H. L., et al. (2009) Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol. 7, e1000238.

    Article  PubMed  Google Scholar 

  40. Rinaudo, K., Bleris, L., Maddamsetti, R., Subramanian, S., Weiss, R., and Benenson, Y. (2007) A universal RNAi-based logic evaluator that operates in mammalian cells. Nat. Biotechnol. 25, 795–801.

    Article  PubMed  CAS  Google Scholar 

  41. Sniegowski, P. D., Gerrish, P. J., and Lenski, R. E. (1997) Evolution of high mutation rates in experimental populations of E. coli. Nature 387, 703–705.

    Article  PubMed  CAS  Google Scholar 

  42. Koonin, E. V., and Wolf, Y. I. (2009) Is evolution Darwinian or/and Lamarckian? Biol. Direct. 4, 42.

    Article  PubMed  Google Scholar 

  43. Acar, M., Mettetal, J. T., and van Oudenaarden, A. (2008) Stochastic switching as a survival strategy in fluctuating environments. Nat. Genet. 40, 471–475.

    Article  PubMed  CAS  Google Scholar 

  44. Sigal, A., Milo, R., Cohen, A., et al. (2006) Variability and memory of protein levels in human cells. Nature 444, 643–646.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks the European Research Council (REC) for grant support. The author also thanks Barbara Morgenstern for editorial help with the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yitzhak Pilpel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Pilpel, Y. (2011). Noise in Biological Systems: Pros, Cons, and Mechanisms of Control. In: Castrillo, J., Oliver, S. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 759. Humana Press. https://doi.org/10.1007/978-1-61779-173-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-173-4_23

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-172-7

  • Online ISBN: 978-1-61779-173-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics