Skip to main content

Computational Yeast Systems Biology: A Case Study for the MAP Kinase Cascade

  • Protocol
  • First Online:
Yeast Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 759))

Abstract

Cellular networks and processes can be mathematically described and analyzed in various ways. Here, the case example of a MAP kinase (MAPK) cascade is used to detail steps in the formulation of a system of ordinary differential equations governing the temporal behavior of a signal transduction pathway after stimulation. Different analysis methods for the model are explained and demonstrated, such as stoichiometric analysis, sensitivity analysis, or studying the effect of deletions and protein overexpression. Finally, a perspective on standards concerning modeling in systems biology is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Han, J. D., Bertin, N., Hao, T., et al. (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430, 88–93.

    Article  PubMed  CAS  Google Scholar 

  2. Uetz, P., and Pankratz, M. J. (2004) Protein interaction maps on the fly. Nat. Biotechnol. 22, 43–44.

    Article  PubMed  CAS  Google Scholar 

  3. Bulashevska, S., and Eils, R. (2005) Inferring genetic regulatory logic from expression data. Bioinformatics 21, 2706–2713.

    Article  PubMed  CAS  Google Scholar 

  4. Sackmann, A., Heiner, M., and Koch, I. (2006) Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinformatics 7, 482.

    Article  PubMed  Google Scholar 

  5. Klipp, E., Liebermeister, W., Helbig, A., Kowald, A., and Schaber, J. (2007) Systems biology standards – the community speaks. Nat. Biotechnol. 25, 390–391.

    Article  PubMed  CAS  Google Scholar 

  6. Varma, A., Boesch, B. W., and Palsson, B. O. (1993) Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl. Environ. Microbiol. 59, 2465–2473.

    PubMed  CAS  Google Scholar 

  7. Gillespie, D. T. (1977) Exact Stochastic Simulation of coupled chemical-reactions. J. Phys. Chem. 81, 2340–2361.

    Article  CAS  Google Scholar 

  8. Chen, K. C., Calzone, L., Csikasz-Nagy, A., Cross, F. R., Novak, B., and Tyson, J. J. (2004) Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell 15, 3841–3862.

    Article  PubMed  CAS  Google Scholar 

  9. Chen, K. C., Csikasz-Nagy, A., Gyorffy, B., Val, J., Novak, B., and Tyson, J. J. (2000) Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol. Biol. Cell 11, 369–391.

    PubMed  CAS  Google Scholar 

  10. Novak, B., Toth, A., Csikasz-Nagy, A., Gyorffy, B., Tyson, J. J., and Nasmyth, K. (1999) Finishing the cell cycle. J. Theor. Biol. 199, 223–233.

    Article  PubMed  CAS  Google Scholar 

  11. Bhalla, U. S. (2002) Biochemical signaling networks decode temporal patterns of synaptic input. J. Comput. Neurosci. 13, 49–62.

    Article  PubMed  Google Scholar 

  12. Bhalla, U. S. (2004) Models of cell signaling pathways. Curr. Opin. Genet. Dev. 14, 375–381.

    Article  PubMed  CAS  Google Scholar 

  13. Bhalla, U. S., and Iyengar, R. (1999) Emergent properties of networks of biological signaling pathways. Science 283, 381–387.

    Article  PubMed  CAS  Google Scholar 

  14. Bhalla, U. S., and Iyengar, R. (2001) Robustness of the bistable behavior of a biological signaling feedback loop. Chaos 11, 221–226.

    Article  PubMed  CAS  Google Scholar 

  15. Cornish-Bowden, A. (2004) Fundamentals of Enzyme Kinetics. London: Portland Press.

    Google Scholar 

  16. Hoops, S., Sahle, S., Gauges, R., et al. (2006) COPASI – a COmplex PAthway SImulator. Bioinformatics 22, 3067–3074.

    Article  PubMed  CAS  Google Scholar 

  17. Heinrich, R., and Rapoport, T. A. (1974) A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur. J. Biochem. 42, 89–95.

    Article  PubMed  CAS  Google Scholar 

  18. Kacser, H., and Burns, J. A. (1973) The control of flux. Symp. Soc. Exp. Biol. 27, 65–104.

    PubMed  CAS  Google Scholar 

  19. Reder, C. (1988) Metabolic control theory: a structural approach. J. Theor. Biol. 135, 175–201.

    Article  PubMed  CAS  Google Scholar 

  20. Heinrich, R., and Schuster, S. (1996) The Regulation of Cellular Systems. New York, NY: Chapman & Hall.

    Book  Google Scholar 

  21. Klipp, E., Liebermeister, W., Wierling, C., Kowald, A., Lehrach, H., and Herwig, R. (2009) Systems Biology. A Textbook. Weinheim: Wiley-VCH.

    Google Scholar 

  22. Ingalls, B. P, and Sauro, H. M. (2003) Sensitivity analysis of stoichiometric networks: an extension of metabolic control analysis to non-steady state trajectories. J. Theor. Biol. 222, 23–36.

    Article  PubMed  Google Scholar 

  23. Goldbeter, A. (1991) A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc. Natl. Acad. Sci. USA 88, 9107–9111.

    Article  PubMed  CAS  Google Scholar 

  24. Klipp, E., Nordlander, B., Krüger, R., Gennemark, P., and Hohmann, S. (2005). Integrative model of the response of yeast to osmotic shock. Nat. Biotechnol. 23, 975–982.

    Article  PubMed  CAS  Google Scholar 

  25. Mettetal, J. T, Muzzey, D., Gomez-Uribe, C., and van Oudenaarden, A. (2008) The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae. Science 319, 482–484.

    Article  PubMed  CAS  Google Scholar 

  26. Hao, N., Behar, M., Parnell, S. C., et al. (2007) A systems-biology analysis of feedback inhibition in the Sho1 osmotic-stress-response pathway. Curr. Biol. 17, 659–667.

    Article  PubMed  CAS  Google Scholar 

  27. Hucka, M., Finney, A., Sauro, H. M., et al. (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531.

    Article  PubMed  CAS  Google Scholar 

  28. Le Novere, N., Finney, A., Hucka, M., et al. (2005) Minimum information requested in the annotation of biochemical models (MIRIAM). Nat. Biotechnol. 23, 1509–1515.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Dr. Matteo Barberis and Dr. Wolfram Liebermeister for helpful discussions. This work has been supported by the European Community through the projects Quasi, Cellcomput, and UNICELLSYS (http://www.unicellsys.eu/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edda Klipp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Klipp, E. (2011). Computational Yeast Systems Biology: A Case Study for the MAP Kinase Cascade. In: Castrillo, J., Oliver, S. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 759. Humana Press. https://doi.org/10.1007/978-1-61779-173-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-173-4_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-172-7

  • Online ISBN: 978-1-61779-173-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics