Skip to main content

Assaying Transcription Factor Stability

  • Protocol
  • First Online:
Plant Transcription Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 754))

Abstract

Similar to the activities of transcription factors (TFs) in other eukaryotes, activities of many plant TFs are determined via regulated proteolysis by the ubiquitin/26S proteasome system. Thus, to fully understand the function of a TF, it is important to determine the fate of the active TF protein and unravel the environmental and intrinsic signals that control its total cellular level. Here we describe how to determine whether a TF of interest is targeted to the 26S proteasome for degradation. The given method combines analyses of the effects of translational inhibition and the inhibition of proteasome activity. An important requirement for these experiments is to monitor in parallel the effects of translational and proteasomal inhibition on the abundance of the TF and (1) on ubiquitin, which becomes rapidly depleted upon translational inhibition (2), on polyubiquitinated proteins, which accumulate upon successful inhibition of the 26S proteasome, and (3) on glutamine synthase, a very stable protein that is used as a general metabolic control. The method described here can be used to test TF stability under a variety of conditions and in different genetic backgrounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenbaum, D., Colangelo, C., Williams, K., and Gerstein, M. (2003) Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 4, 117.

    Article  PubMed  Google Scholar 

  2. Kislinger, T., Cox, B., Kannan, A., Chung, C., Hu, P., Ignatchenko, A., Scott, M. S., Gramolini, A. O., Morris, Q., Hallett, M. T., Rossant, J., Hughes, T. R., Frey, B., and Emili, A. (2006) Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell 125, 173–186.

    Article  PubMed  CAS  Google Scholar 

  3. Fu, N., Drinnenberg, I., Kelso, J., Wu, J.-R., Pääbo, S., Zeng, R., and Khaitovich, P. (2007) Comparison of protein and mRNA expression evolution in humans and chimpanzees. PLoS One 2, e216.

    Article  PubMed  Google Scholar 

  4. Nie, L., Wu, G., Culley, D. E., Scholten, J. C., and Zhang, W. (2007) Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications. Crit. Rev. Biotechnol. 27, 63–75.

    Article  PubMed  CAS  Google Scholar 

  5. Gagne, J. M., Smalle, J., Gingerich, D. J., Walker, J. M., Yoo, S. D., Yanagisawa, S., and Vierstra, R. D. (2004) Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc. Natl. Acad. Sci. USA 101, 6803–6808.

    Article  PubMed  CAS  Google Scholar 

  6. Guo, H., and Ecker, J. R. (2003) Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor. Cell 115, 667–677.

    Article  PubMed  CAS  Google Scholar 

  7. Potuschak, T., Lechner, E., Parmentier, Y., Yanagisawa, S., Grava, S., Koncz, C., and Genschik, P. (2003) EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115, 679–689.

    Article  PubMed  CAS  Google Scholar 

  8. Schwager, K. M., Calderon-Villalobos, L. I., Dohmann, E. M., Willige, B. C., Knierer, S., Nill, C., and Schwechheimer, C. (2007) Characterization of the VIER F-BOX PROTEINE genes from Arabidopsis reveals their importance for plant growth and development. Plant Cell 19, 1163–1178.

    Article  PubMed  CAS  Google Scholar 

  9. Osterlund, M. T., Hardtke, C. S., Wei, N., and Deng, X. W. (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405, 462–466.

    Article  PubMed  CAS  Google Scholar 

  10. Gray, W. M., Kepinski, S., Rouse, D., Leyser, O., and Estelle, M. (2001) Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414, 271–276.

    Article  PubMed  CAS  Google Scholar 

  11. Kepinski, S., and Leyser, O. (2004) Auxin-induced SCFTIR1-Aux/IAA interaction involves stable modification of the SCFTIR1 complex. Proc. Natl. Acad. Sci. USA 101, 12381–12386.

    Article  PubMed  CAS  Google Scholar 

  12. Yang, X., Lee, S., So, J. H., Dharmasiri, S., Dharmasiri, N., Ge, L., Jensen, C., Hangarter, R., Hobbie, L., and Estelle, M. (2004) The IAA1 protein is encoded by AXR5 and is a substrate of SCFTIR1. Plant J. 40, 772–782.

    Article  PubMed  CAS  Google Scholar 

  13. Zenser, N., Ellsmore, A., Leasure, C., and Callis, J. (2001) Auxin modulates the degradation rate of Aux/IAA proteins. Proc. Natl. Acad. Sci. USA 98, 11795–11800.

    Article  PubMed  CAS  Google Scholar 

  14. Chini, A., Fonseca, S., Fernández, G., Adie, B., Chico, J. M., Lorenzo, O., García-Casado, G., López-Vidriero, I., Lozano, F. M., Ponce, M. R., Micol, J. L., and Solano, R. (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666–671.

    Article  PubMed  CAS  Google Scholar 

  15. He, J. X., Gendron, J. M., Yang, Y., Li, J., and Wang, Z. Y. (2002) The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA 99, 10185–10190.

    Article  PubMed  CAS  Google Scholar 

  16. Borissenko, L., and Groll, M. (2007) Diversity of proteasomal missions: fine tuning of the immune response. Biol. Chem. 388, 947–955.

    Article  PubMed  CAS  Google Scholar 

  17. DeMartino, G. N., and Gillette, T. G. (2007) Proteasomes: machines for all reasons. Cell 129, 659–662.

    Article  PubMed  CAS  Google Scholar 

  18. Kurepa, J., Toh-e, A., and Smalle, J. A. (2008) 26S proteasome regulatory particle mutants have increased oxidative stress tolerance. Plant J. 53, 102–114.

    Article  PubMed  CAS  Google Scholar 

  19. Hanna, J., and Finley, D. (2007) A proteasome for all occasions. FEBS Lett. 581, 2854–2861.

    Article  PubMed  CAS  Google Scholar 

  20. Smalle, J. A., and Vierstra, R. D. (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu. Rev. Plant Biol. 55, 555–590.

    Article  PubMed  CAS  Google Scholar 

  21. Dreher, K., and Callis, J. (2007) Ubiquitin, hormones and biotic stress in plants. Ann. Bot. (Lond.) 99, 787–822.

    Article  CAS  Google Scholar 

  22. Crews, C. M. (2003) Feeding the machine: mechanisms of proteasome-catalyzed degradation of ubiquitinated proteins. Curr. Opin. Chem. Biol. 7, 534–539.

    Article  PubMed  CAS  Google Scholar 

  23. Pickart, C. M. (2000) Ubiquitin in chains. Trends Biochem. Sci. 25, 544–548.

    Article  PubMed  CAS  Google Scholar 

  24. Thrower, J. S., Hoffman, L., Rechsteiner, M., and Pickart, C. M. (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102.

    Article  PubMed  CAS  Google Scholar 

  25. Kurepa, J., Karangwa, C., Duke, L. S., and Smalle, J. A. (2010) Arabidopsis sensitivity to protein synthesis inhibitors depends on 26S proteasome activity. Plant Cell Rep. 29, 249–259.

    Article  PubMed  CAS  Google Scholar 

  26. Kurepa, J., and Smalle, J. A. (2008) Structure, function and regulation of plant proteasomes. Biochimie 90, 324–335.

    Article  PubMed  CAS  Google Scholar 

  27. Swerdlow, P. S., Finley, D., and Varshavsky, A. (1986) Enhancement of immunoblot sensitivity by heating of hydrated filters. Anal. Biochem. 156, 147–153.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the KTRD Center in Lexington, KY, and by grants from NSF (# 0919991) and from the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service (#2005-35304-16043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan A. Smalle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kurepa, J., Smalle, J.A. (2011). Assaying Transcription Factor Stability. In: Yuan, L., Perry, S. (eds) Plant Transcription Factors. Methods in Molecular Biology, vol 754. Humana Press. https://doi.org/10.1007/978-1-61779-154-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-154-3_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-153-6

  • Online ISBN: 978-1-61779-154-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics