Skip to main content

FRET-Based Assays to Monitor DNA Binding and Annealing by Rad52 Recombination Mediator Protein

  • Protocol
  • First Online:
DNA Recombination

Part of the book series: Methods in Molecular Biology ((MIMB,volume 745))

Abstract

During homologous recombination and homology-directed repair of broken chromosomes, proteins that mediate and oppose recombination form dynamic complexes on damaged DNA. Quantitative analysis of these nucleoprotein assemblies requires a robust signal, which reports on the association of a recombination mediator with its substrate and on the state of substrate DNA within the complex. Eukaryotic Rad52 protein mediates recombination, repair, and restart of collapsed replication forks by facilitating replacement of ssDNA binding protein replication protein A (RPA) with Rad51 recombinase and by mediating annealing of two complementary DNA strands protected by RPA. The characteristic binding mode whereby ssDNA is wrapped around the Rad52 ring allowed us to develop robust and sensitive FRET-based assays for monitoring Rad52 interactions with protein-free DNA and ssDNA–RPA complexes. By reporting on the configuration of ssDNA dually labeled with Cy3 and Cy5 fluorescent dyes, solution-based FRET is used to analyze Rad52–RPA–DNA interactions under equilibrium binding conditions. Finally, FRET between Cy3 and Cy5 dyes incorporated into two homologous ssDNA molecules can be used to analyze interplay between Rad52-mediated DNA strand annealing and duplex DNA destabilization by RPA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Couedel, C., Mills, K.D., Barchi, M., Shen, L., Olshen, A., Johnson, R.D., Nussenzweig, A., Essers, J., Kanaar, R., Li, G.C., Alt, F.W., and Jasin, M. (2004) Collaboration of homologous recombination and nonhomologous end-joining factors for the survival and integrity of mice and cells. Genes Dev 18, 1293–1304.

    Article  PubMed  CAS  Google Scholar 

  2. Sung, P., and Klein, H. (2006) Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 7, 739–750.

    Article  PubMed  CAS  Google Scholar 

  3. Krogh, B.O., and Symington, L.S. (2004) Recombination proteins in yeast. Annu Rev Genet 38, 233–271.

    Article  PubMed  CAS  Google Scholar 

  4. Mortensen, U.H., Lisby, M., and Rothstein, R. (2009) Rad52. Curr Biol 19, R676–R77.

    Article  PubMed  CAS  Google Scholar 

  5. Mortensen, U.H., Erdeniz, N., Feng, Q., and Rothstein, R. (2002) A molecular genetic dissection of the evolutionarily conserved N terminus of yeast Rad52. Genetics 161, 549–562.

    PubMed  CAS  Google Scholar 

  6. Sugiyama, T., New, J.H., and Kowalczykowski, S.C. (1998) DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA. Proc Natl Acad Sci USA 95, 6049–6054.

    Article  PubMed  CAS  Google Scholar 

  7. Bugreev, D.V., Hanaoka, F., and Mazin, A.V. (2007) Rad54 dissociates homologous recombination intermediates by branch migration. Nat Struct Mol Biol 14, 746–753.

    Article  PubMed  CAS  Google Scholar 

  8. Miyazaki, T., Bressan, D.A., Shinohara, M., Haber, J.E., and Shinohara, A. (2004) In vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair. EMBO J 23, 939–949.

    Article  PubMed  CAS  Google Scholar 

  9. Sugiyama, T., Kantake, N., Wu, Y., and Kowalczykowski, S.C. (2006) Rad52-mediated DNA annealing after Rad51-mediated DNA strand exchange promotes second ssDNA capture. EMBO J 25, 5539–5548.

    Article  PubMed  CAS  Google Scholar 

  10. McIlwraith, M.J., and West, S.C. (2008) DNA repair synthesis facilitates RAD52-mediated second-end capture during DSB repair. Mol Cell 29, 510–516.

    Article  PubMed  CAS  Google Scholar 

  11. Nimonkar, A.V., Sica, R.A., and Kowalczykowski, S.C. (2009) Rad52 promotes second-end DNA capture in double-stranded break repair to form complement-stabilized joint molecules. Proc Natl Acad Sci USA 106, 3077–3082.

    Article  PubMed  CAS  Google Scholar 

  12. Paques, F., and Haber, J.E. (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63, 349–404.

    PubMed  CAS  Google Scholar 

  13. Stark, J.M., Pierce, A.J., Oh, J., Pastink, A., and Jasin, M. (2004) Genetic steps of mammalian homologous repair with distinct mutagenic consequences. Mol Cell Biol 24, 9305–9316.

    Article  PubMed  CAS  Google Scholar 

  14. Shinohara, A., Shinohara, M., Ohta, T., Matsuda, S., and Ogawa, T. (1998) Rad52 forms ring structures and co-operates with RPA in single-strand DNA annealing. Genes Cells 3, 145–156.

    Article  PubMed  CAS  Google Scholar 

  15. Stasiak, A.Z., Larquet, E., Stasiak, A., Muller, S., Engel, A., Van Dyck, E., West, S.C., and Egelman, E.H. (2000) The human Rad52 protein exists as a heptameric ring. Curr Biol 10, 337–340.

    Article  PubMed  CAS  Google Scholar 

  16. Singleton, M.R., Wentzell, L.M., Liu, Y., West, S.C., and Wigley, D.B. (2002) Structure of the single-strand annealing domain of human RAD52 protein. Proc Natl Acad Sci USA 99, 13492–13497.

    Article  PubMed  CAS  Google Scholar 

  17. Kagawa, W., Kurumizaka, H., Ishitani, R., Fukai, S., Nureki, O., Shibata, T., and Yokoyama, S. (2002) Crystal structure of the homologous-pairing domain from the human Rad52 recombinase in the undecameric form. Mol Cell 10, 359–371.

    Article  PubMed  CAS  Google Scholar 

  18. Lloyd, J.A., McGrew, D.A., and Knight, K.L. (2005) Identification of residues important for DNA binding in the full-length human Rad52 protein. J Mol Biol 345, 239–249.

    Article  PubMed  CAS  Google Scholar 

  19. Kagawa, W., Kagawa, A., Saito, K., Ikawa, S., Shibata, T., Kurumizaka, H., and Yokoyama, S. (2008) Identification of a second DNA binding site in the human Rad52 protein. J Biol Chem 283, 24264–24273.

    Article  PubMed  CAS  Google Scholar 

  20. Petukhova, G., Stratton, S.A., and Sung, P. (1999) Single strand DNA binding and annealing activities in the yeast recombination factor Rad59. J Biol Chem 274, 33839–33842.

    Article  PubMed  CAS  Google Scholar 

  21. Wu, Y., Sugiyama, T., and Kowalczykowski, S.C. (2006) DNA annealing mediated by Rad52 and Rad59 proteins. J Biol Chem 281, 15441–15449.

    Article  PubMed  CAS  Google Scholar 

  22. Ploquin, M., Bransi, A., Paquet, E.R., Stasiak, A.Z., Stasiak, A., Yu, X., Cieslinska, A.M., Egelman, E.H., Moineau, S., and Masson, J.-Y. (2008) Functional and structural basis for a bacteriophage homolog of human RAD52. Curr Biol 18, 1142–1146.

    Article  PubMed  CAS  Google Scholar 

  23. Pant, K., Shokri, L., Karpel, R.L., Morrical, S.W., and Williams, M.C. (2008) Modulation of T4 gene 32 protein DNA binding activity by the recombination mediator protein UvsY. J Mol Biol 380, 799–811.

    Article  PubMed  CAS  Google Scholar 

  24. Erler, A., Wegmann, S., Elie-Caille, C., Bradshaw, C.R., Maresca, M., Seidel, R., Habermann, B., Muller, D.J., and Stewart, A.F. (2009) Conformational adaptability of red[beta] during DNA annealing and implications for its structural relationship with Rad52. J Mol Biol 391, 586–598.

    Article  PubMed  CAS  Google Scholar 

  25. Grimme, J.M., Honda, M., Wright, R., Okuno, Y., Rothenberg, E., Mazin, A.V., Ha, T., and Spies, M. (2010) Human Rad52 binds and wraps single-stranded DNA and mediates annealing via two hRad52-ssDNA complexes. Nucleic Acids Res 38, 2917–2930.

    Article  PubMed  CAS  Google Scholar 

  26. Jackson, D., Dhar, K., Wahl, J.K., Wold, M.S., and Borgstahl, G.E. (2002) Analysis of the human replication protein A:Rad52 complex: evidence for crosstalk between RPA32, RPA70, Rad52 and DNA. J Mol Biol 321, 133–148.

    Article  PubMed  CAS  Google Scholar 

  27. de Vries, F.A., Zonneveld, J.B., de Groot, A.J., Koning, R.I., van Zeeland, A.A., and Pastink, A. (2007) Schizosaccharomyces pombe Rad22A and Rad22B have similar biochemical properties and form multimeric structures. Mutat Res 615, 143–152.

    PubMed  Google Scholar 

  28. Majka, J., and Speck, C. (2007) Analysis of protein-DNA interactions using surface plasmon resonance. Adv Biochem Eng Biotechnol 104, 13–36.

    PubMed  CAS  Google Scholar 

  29. Clegg, R.M. (2002) FRET tells us about proximities, distances, orientations and dynamic properties. J Biotechnol 82, 177–179.

    PubMed  CAS  Google Scholar 

  30. Rothenberg, E., Grimme, J.M., Spies, M., and Ha, T. (2008) Human Rad52-mediated homology search and annealing occurs by continuous interactions between overlapping nucleoprotein complexes. Proc Natl Acad Sci USA 105, 20274–20279.

    Article  PubMed  CAS  Google Scholar 

  31. Henricksen, L.A., Umbricht, C.B., and Wold, M.S. (1994) Recombinant replication protein A: expression, complex formation, and functional characterization. J Biol Chem 269, 11121–11132.

    PubMed  CAS  Google Scholar 

  32. Benson, F.E., Baumann, P., and West, S.C. (1998) Synergistic actions of Rad51 and Rad52 in recombination and DNA repair. Nature 391, 401–404.

    Article  PubMed  CAS  Google Scholar 

  33. Reddy, G., Golub, E.I., and Radding, C.M. (1997) Human Rad52 protein promotes single-strand DNA annealing followed by branch migration. Mutat Res 377, 53–59.

    PubMed  CAS  Google Scholar 

  34. Fanning, E., Klimovich, V., and Nager, A.R. (2006) A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res 34, 4126–4137.

    Article  PubMed  CAS  Google Scholar 

  35. Gomes, X.V., Henricksen, L.A., and Wold, M.S. (1996) Proteolytic mapping of human replication protein A: evidence for multiple structural domains and a conformational change upon interaction with single-stranded DNA. Biochemistry 35, 5586–5595.

    Article  PubMed  CAS  Google Scholar 

  36. Gomes, X.V., and Wold, M.S. (1996) Functional domains of the 70-kilodalton subunit of human replication protein A. Biochemistry 35, 10558–10568.

    Article  PubMed  CAS  Google Scholar 

  37. Kim, C., Snyder, R.O., and Wold, M.S. (1992) Binding properties of replication protein A from human and yeast cells. Mol Cell Biol 12, 3050–3059.

    PubMed  CAS  Google Scholar 

  38. Kim, C., Paulus, B.F., and Wold, M.S. (1994) Interactions of human replication protein A with oligonucleotides. Biochemistry 33, 14197–14206.

    Article  PubMed  CAS  Google Scholar 

  39. Parsons, C.A., Baumann, P., Van Dyck, E., and West, S.C. (2000) Precise binding of single-stranded DNA termini by human RAD52 protein. EMBO J 19, 4175–4181.

    Article  PubMed  CAS  Google Scholar 

  40. Fischer, C.J., Maluf, N.K., and Lohman, T.M. (2004) Mechanism of ATP-dependent translocation of E. coli UvrD monomers along single-stranded DNA. J Mol Biol 344, 1287–1309.

    Article  PubMed  CAS  Google Scholar 

  41. Luo, G., Wang, M., Konigsberg, W.H., and Xie, X.S. (2007) Single-molecule and ensemble fluorescence assays for a functionally important conformational change in T7 DNA polymerase. Proc Natl Acad Sci USA 104, 12610–12615.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Spies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Grimme, J.M., Spies, M. (2011). FRET-Based Assays to Monitor DNA Binding and Annealing by Rad52 Recombination Mediator Protein. In: Tsubouchi, H. (eds) DNA Recombination. Methods in Molecular Biology, vol 745. Humana Press. https://doi.org/10.1007/978-1-61779-129-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-129-1_27

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-128-4

  • Online ISBN: 978-1-61779-129-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics