Skip to main content

Homologous Recombination Assay for Interstrand Cross-Link Repair

  • Protocol
  • First Online:
DNA Recombination

Part of the book series: Methods in Molecular Biology ((MIMB,volume 745))

Abstract

DNA interstrand cross-links (ICLs) covalently link both strands of the DNA duplex, impeding cellular processes like DNA replication. Homologous recombination (HR) is considered to be a major pathway for the repair of ICLs in mammalian cells as mutants for HR components are highly sensitive to DNA-damaging agents that cause ICLs. This chapter describes GFP assays to measure HR following site-specific ICL formation with psoralen through DNA triplex technology. This approach can be used to determine the genetic requirements for ICL-induced HR in relation to those involved in HR repair of other DNA lesions such as double-strand breaks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guainazzi, A., and Schärer, O.D. (2010) Using synthetic DNA interstrand crosslinks to elucidate repair pathways and identify new therapeutic targets for cancer chemotherapy. Cell Mol Life Sci 67, 3683–3697.

    Article  PubMed  CAS  Google Scholar 

  2. Hinz, J.M. (2010) Role of homologous recombination in DNA interstrand crosslink repair. Environ Mol Mutagen 51, 582–603.

    PubMed  CAS  Google Scholar 

  3. Moynahan, M.E., Chiu, J.W., Koller, B.H., and Jasin, M. (1999) Brca1 controls homology-directed DNA repair. Mol Cell 4, 511–518.

    Article  PubMed  CAS  Google Scholar 

  4. Moynahan, M.E., Cui, T.Y., and Jasin, M. (2001) Homology-directed DNA repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer Res 61, 4842–4850.

    PubMed  CAS  Google Scholar 

  5. Moynahan, M.E., Pierce, A.J., and Jasin, M. (2001) BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell 7, 263–272.

    Article  PubMed  CAS  Google Scholar 

  6. Kraakman-van der Zwet, M., et al. (2002) Brca2 (XRCC11) deficiency results in radioresistant DNA synthesis and a higher frequency of spontaneous deletions. Mol Cell Biol 22, 669–679.

    Article  PubMed  CAS  Google Scholar 

  7. Wang, W. (2007) Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet 8, 735–748.

    Article  PubMed  CAS  Google Scholar 

  8. Auerbach, A.D. (2009) Fanconi anemia and its diagnosis. Mutat Res 668, 4–10.

    PubMed  CAS  Google Scholar 

  9. Nakanishi, K., et al. (2005) Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proc Natl Acad Sci USA 102, 1110–1115.

    Article  PubMed  CAS  Google Scholar 

  10. Nakanishi, K., Cavallo, F., Perrouault, L., Giovannangeli, C., Moynahan, M.E., Barchi, M., Brunet, E., and Jasin, M. (2011) Homology-directed Fanconi anemia pathway cross-link repair is dependent on DNA replication. Nat Struct Mol Biol doi:10.1038/nsmb.2029.

    Google Scholar 

  11. Pierce, A.J., Johnson, R.D., Thompson, L.H., and Jasin, M. (1999) XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev 13, 2633–2638.

    Article  PubMed  CAS  Google Scholar 

  12. Pierce, A.J., and Jasin, M. (2005) Measuring recombination proficiency in mouse embryonic stem cells. Methods Mol Biol 291, 373–384.

    PubMed  CAS  Google Scholar 

  13. Moynahan, M.E., and Jasin, M. (2010) Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 11, 196–207.

    Article  PubMed  CAS  Google Scholar 

  14. Slabicki, M., et al. (2010) A genome-scale DNA repair RNAi screen identifies SPG48 as a novel gene associated with hereditary spastic paraplegia. PLoS Biol 8, e1000408.

    Article  PubMed  Google Scholar 

  15. Chin, J.Y., and Glazer, P.M. (2009) Repair of DNA lesions associated with triplex-forming oligonucleotides. Mol Carcinog 48, 389–399.

    Article  PubMed  CAS  Google Scholar 

  16. Raha, M., Wang, G., Seidman, M.M., and Glazer, P.M. (1996) Mutagenesis by third-strand-directed psoralen adducts in repair-deficient human cells: high frequency and altered spectrum in a xeroderma pigmentosum variant. Proc Natl Acad Sci USA 93, 2941–2946.

    Article  PubMed  CAS  Google Scholar 

  17. Reisman, D., Yates, J., and Sugden, B. (1985) A putative origin of replication of plasmids derived from Epstein-Barr virus is composed of two cis-acting components. Mol Cell Biol 5, 1822–1832.

    PubMed  CAS  Google Scholar 

  18. Pierce, A.J., Hu, P., Han, M., Ellis, N., and Jasin, M. (2001) Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev 15, 3237–3242.

    Article  PubMed  CAS  Google Scholar 

  19. Richardson, C., Moynahan, M.E., and Jasin, M. (1998) Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev 12, 3831–3842.

    Article  PubMed  CAS  Google Scholar 

  20. Niwa, H., Yamamura, K., and Miyazaki, J. (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199.

    Article  PubMed  CAS  Google Scholar 

  21. Brunet, E., et al. (2005) Exploring cellular activity of locked nucleic acid-modified triplex-forming oligonucleotides and defining its molecular basis. J Biol Chem 280, 20076–20085.

    Article  PubMed  CAS  Google Scholar 

  22. Brunet, E., Corgnali, M., Cannata, F., Perrouault, L., and Giovannangeli, C. (2006) Targeting chromosomal sites with locked nucleic acid-modified triplex-forming oligonucleotides: study of efficiency dependence on DNA nuclear environment. Nucleic Acids Res 34, 4546–4553.

    Article  PubMed  CAS  Google Scholar 

  23. Raschle, M., et al. (2008) Mechanism of replication-coupled DNA interstrand crosslink repair. Cell 134, 969–980.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Byrne Fund and National Institutes for Health grants P01CA94060 (M.J.) and R01GM54668 (M.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Jasin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nakanishi, K., Cavallo, F., Brunet, E., Jasin, M. (2011). Homologous Recombination Assay for Interstrand Cross-Link Repair. In: Tsubouchi, H. (eds) DNA Recombination. Methods in Molecular Biology, vol 745. Humana Press. https://doi.org/10.1007/978-1-61779-129-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-129-1_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-128-4

  • Online ISBN: 978-1-61779-129-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics