Skip to main content

The Use of Translocating Fluorescent Biosensors for Real-Time Monitoring of GPCR-Mediated Signaling Events

  • Protocol
  • First Online:
Receptor Signal Transduction Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 746))

Abstract

The ability to visualize the subcellular localization of proteins by labeling them with fluorescent proteins is a powerful tool in cell biology. In the G protein-coupled receptor signaling field, this technique has been utilized to examine the various aspects of receptor behavior, including activation, internalization and recycling, as well as alterations in the cellular levels of a variety of second messengers and signaling intermediates. Attaching variants of green fluorescent protein on to protein modules, which possess high affinity and selectivity for specific signaling molecules has allowed the visualization of key signaling pathway intermediates in real time, in living cells. This chapter outlines a protocol for the expression and visualization (by confocal microscopy) of such fluorescent “biosensors” and provides guidance on the analysis and interpretation of data obtained from such experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsien, R. Y. (2009) Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 48, 5612–5626.

    Article  PubMed  CAS  Google Scholar 

  2. Nahorski, S. R., Young, K. W., Challiss, R. A. J., and Nash, M. S. (2003) Visualizing phosphoinositide signalling in single neurons gets a green light. Trends Neurosci. 26, 444–452.

    Article  PubMed  CAS  Google Scholar 

  3. Halet, G. (2005) Imaging phosphoinositide dynamics using GFP-tagged protein domains. Biol. Cell 97, 501–518.

    Article  PubMed  CAS  Google Scholar 

  4. Varnai, P., and Balla, T. (2006) Live cell imaging of phosphoinositide dynamics with fluorescent protein domains. Biochim. Biophys. Acta. 1761, 957–967.

    Article  PubMed  CAS  Google Scholar 

  5. Horowitz, L. F., Hirdes, W., Suh, B. C., Hilgemann, D. W., Mackie, K., and Hille, B. (2005) Phospholipase C in living cells: activation, inhibition, Ca2+ requirement, and regulation of M current. J. Gen. Physiol. 126, 243–262.

    Article  PubMed  CAS  Google Scholar 

  6. Lohse, M. J., Bunemann, M., Hoffmann, C., Vilardaga, J. P., and Nikolaev, V. O. (2007) Monitoring receptor signaling by intramole­cular FRET. Curr. Opin. Pharmacol. 7, 547–553.

    Article  PubMed  CAS  Google Scholar 

  7. Barak, L. S., Ferguson, S. S., Zhang, J., and Caron, M. G. (1997) A β-arrestin/green ­fluorescent protein biosensor for detecting G protein-coupled receptor activation. J. Biol. Chem. 272, 27497–27500.

    Article  PubMed  CAS  Google Scholar 

  8. Michaelson, D., Silletti, J., Murphy, G., D’Eustachio, P., Rush, M., and Philips, M. R. (2001) Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J. Cell Biol. 152, 111–126.

    Article  PubMed  CAS  Google Scholar 

  9. Oancea, E., Teruel, M. N., Quest, A. F., and Meyer, T. (1998) Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells. J. Cell Biol. 140, 485–498.

    Article  PubMed  CAS  Google Scholar 

  10. Oancea, E., and Meyer, T. (1998) Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell 95, 307–318.

    Article  PubMed  CAS  Google Scholar 

  11. Babwah, A. V., Dale, L. B., and Ferguson, S. S. (2003) Protein kinase C isoform-specific differences in the spatial-temporal regulation and decoding of metabotropic glutamate receptor1a-stimulated second messenger responses. J. Biol. Chem. 278, 5419–5426.

    Article  PubMed  CAS  Google Scholar 

  12. Nelson, C. P., Willets, J. M., Davies, N. W., Challiss, R. A. J., and Standen, N. B. (2008) Visualizing the temporal effects of vasoconstrictors on PKC translocation and Ca2+ signaling in single resistance arterial smooth muscle cells. Am. J. Physiol. Cell Physiol. 295, C1590–C1601.

    Article  PubMed  CAS  Google Scholar 

  13. Hughes, S., Marsh, S. J., Tinker, A., and Brown, D. A. (2007) PIP2-dependent inhibition of M-type (Kv7.2/7.3) potassium channels: direct on-line assessment of PIP2 depletion by Gq-coupled receptors in single living neurons. Pflugers Arch. 455, 115–124.

    Article  PubMed  CAS  Google Scholar 

  14. Quinn, K. V., Behe, P., and Tinker, A. (2008) Monitoring changes in membrane phosphatidylinositol 4,5-bisphosphate in living cells using a domain from the transcription factor tubby. J. Physiol. 586, 2855–2871.

    Article  PubMed  CAS  Google Scholar 

  15. Nelson, C. P., Nahorski, S. R., and Challiss, R. A. J. (2008) Temporal profiling of changes in phosphatidylinositol 4,5-bisphosphate, inositol 1,4,5-trisphosphate and diacylglycerol allows comprehensive analysis of phospholipase C-initiated signalling in single neurons. J. Neurochem. 107, 602–615.

    Article  PubMed  CAS  Google Scholar 

  16. Stauffer, T. P., Ahn, S., and Meyer, T. (1998) Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr. Biol. 8, 343–346.

    Article  PubMed  CAS  Google Scholar 

  17. Varnai, P., and Balla, T. (1998) Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H)inositol-labeled phosphoinositide pools. J. Cell Biol. 143, 501–510.

    Article  PubMed  CAS  Google Scholar 

  18. Palmer, A. E., and Tsien, R. Y. (2006) Measuring calcium signaling using genetically targetable fluorescent indicators. Nat. Protoc. 1, 1057–1065.

    Article  PubMed  CAS  Google Scholar 

  19. Varnai, P., and Balla, T. (2008) Live cell imaging of phosphoinositides with expressed inositide binding protein domains. Methods 46, 167–176.

    Article  PubMed  CAS  Google Scholar 

  20. Nash, M. S., Young, K. W., Willars, G. B., Challiss, R. A. J., and Nahorski, S. R. (2001) Single-cell imaging of graded Ins(1,4,5)P3 production following G-protein-coupled-receptor activation. Biochem. J. 356, 137–142.

    Article  PubMed  CAS  Google Scholar 

  21. Bartlett, P. J., Young, K. W., Nahorski, S. R., and Challiss, R. A. J. (2005) Single cell analysis and temporal profiling of agonist-mediated inositol 1,4,5-trisphosphate, Ca2+, diacylglycerol, and protein kinase C signaling using fluorescent biosensors. J. Biol. Chem. 280, 21837–21846.

    Article  PubMed  CAS  Google Scholar 

  22. Jensen, J. B., Lyssand, J. S., Hague, C., and Hille, B. (2009) Fluorescence changes reveal kinetic steps of muscarinic receptor-mediated modulation of phosphoinositides and Kv7.2/7.3 K+ channels. J. Gen. Physiol. 133, 347–359.

    Article  PubMed  CAS  Google Scholar 

  23. Lenz, J. C., Reusch, H. P., Albrecht, N., Schultz, G., and Schaefer, M. (2002) Ca2+-controlled competitive diacylglycerol binding of protein kinase C isoenzymes in living cells. J. Cell Biol. 159, 291–302.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang, J., Campbell, R. E., Ting, A. Y., and Tsien, R. Y. (2002) Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3, 906–918.

    Article  PubMed  CAS  Google Scholar 

  25. Murray, J. M. (2006) Confocal microscopy, deconvolution and structured illumination methods. In Basic Methods in Microscopy (Goldman, D. L. S. a. R. D., ed) pp. 43–81, Cold Spring Harbor Laboratory Press.

    Google Scholar 

  26. Balla, A., Kim, Y. J., Varnai, P., Szentpetery, Z., Knight, Z., Shokat, K. M., and Balla, T. (2008) Maintenance of hormone-sensitive phosphoinositide pools in the plasma membrane requires phosphatidylinositol 4-kinase IIIalpha. Mol. Biol. Cell 19, 711–721.

    Article  PubMed  CAS  Google Scholar 

  27. Xu, C., Watras, J., and Loew, L. M. (2003) Kinetic analysis of receptor-activated phosphoinositide turnover. J. Cell Biol. 161, 779–791.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. John Challiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nelson, C.P., Challiss, R.A.J. (2011). The Use of Translocating Fluorescent Biosensors for Real-Time Monitoring of GPCR-Mediated Signaling Events. In: Willars, G., Challiss, R. (eds) Receptor Signal Transduction Protocols. Methods in Molecular Biology, vol 746. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-126-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-126-0_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-125-3

  • Online ISBN: 978-1-61779-126-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics