Skip to main content

CFTR Regulation by Phosphorylation

  • Protocol
  • First Online:
Cystic Fibrosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 741))

Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) is the gene product mutated in cystic fibrosis, a common lethal genetic disease characterized by abnormal electrolyte transport across epithelia. CFTR functions as an ATP-gated, phosphorylation-regulated Cl channel that mediates agonist-stimulated apical membrane epithelial Cl and bicarbonate secretion and also regulates a variety of other transport proteins and cellular processes. CFTR belongs to the ATP-binding cassette (ABC) transporter superfamily. Its presumed architecture consists of two transmembrane domain regions that form the channel pore, two nucleotide-binding domains that bind and hydrolyze ATP, and a unique regulatory (R) domain that contains numerous protein kinase A (PKA) and protein kinase C (PKC) phosphorylation sites. Other kinases have also been shown more recently to phosphorylate and regulate CFTR activity. This chapter describes strategies and methods for studying the phosphorylation of CFTR both in vitro and whole-cell systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., et al. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073.

    Article  PubMed  CAS  Google Scholar 

  2. Rommens, J. M., Iannuzzi, M. C., Kerem, B., Drumm, M. L., Melmer, G., Dean, M., et al. (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245, 1059–1065.

    Article  PubMed  CAS  Google Scholar 

  3. Carson, M. R., Travis, S. M., and Welsh, M. J. (1995) The two nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) have distinct functions in controlling channel activity. J. Biol. Chem. 270, 1711–1717.

    Article  PubMed  CAS  Google Scholar 

  4. Cheng, S. H., Rich, D. P., Marshall, J., Gregory, R. J., Welsh, M. J., and Smith, A. E. (1991) Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66, 1027–1036.

    Article  PubMed  CAS  Google Scholar 

  5. Chappe, V., Hinkson, D. A., Zhu, T., Chang, X. B., Riordan, J. R., and Hanrahan, J. W. (2003) Phosphorylation of protein kinase C sites in NBD1 and the R domain control CFTR channel activation by PKA. J. Physiol. 548, 39–52.

    Article  PubMed  CAS  Google Scholar 

  6. Jia, Y., Mathews, C. J., and Hanrahan, J. W. (1997) Phosphorylation by protein kinase C is required for acute activation of cystic fibrosis transmembrane conductance regulator by protein kinase A. J. Biol. Chem. 272, 4978–4984.

    Article  PubMed  CAS  Google Scholar 

  7. Hallows, K. R., Raghuram, V., Kemp, B. E., Witters, L. A., and Foskett, J. K. (2000) Inhibition of cystic fibrosis transmembrane conductance regulator by novel interaction with the metabolic sensor AMP-activated protein kinase. J. Clin. Invest. 105, 1711–1721.

    Article  PubMed  CAS  Google Scholar 

  8. Hallows, K. R., McCane, J. E., Kemp, B. E., Witters, L. A., and Foskett, J. K. (2003) Regulation of channel gating by AMP-activated protein kinase modulates cystic fibrosis transmembrane conductance regulator activity in lung submucosal cells. J. Biol. Chem. 278, 998–1004.

    Article  PubMed  CAS  Google Scholar 

  9. Hallows, K. R., Kobinger, G. P., Wilson, J. M., Witters, L. A., and Foskett, J. K. (2003) Physiological modulation of CFTR activity by AMP-activated protein kinase in polarized T84 cells. Am. J. Physiol. Cell Physiol. 284, C1297–C1308.

    PubMed  CAS  Google Scholar 

  10. King, J. D., Jr., Fitch, A. C., Lee, J. K., McCane, J. E., Mak, D. O., Foskett, J. K., et al. (2009) AMP-activated protein kinase phosphorylation of the R domain inhibits PKA stimulation of CFTR. Am. J. Physiol. Cell Physiol. 297, C94–C101.

    Article  PubMed  CAS  Google Scholar 

  11. Kongsuphol, P., Cassidy, D., Hieke, B., Treharne, K. J., Schreiber, R., Mehta, A., et al. (2009) Mechanistic insight into control of CFTR by AMPK. J. Biol. Chem. 284, 5645–5653.

    Article  PubMed  CAS  Google Scholar 

  12. Fischer, H., and Machen, T. E. (1996) The tyrosine kinase p60c-src regulates the fast gate of the cystic fibrosis transmembrane conductance regulator chloride channel. Biophys. J. 71, 3073–3082.

    Article  PubMed  CAS  Google Scholar 

  13. Treharne, K. J., Xu, Z., Chen, J. H., Best, O. G., Cassidy, D. M., Gruenert, D. C., et al. (2009) Inhibition of protein kinase CK2 closes the CFTR Cl channel, but has no effect on the cystic fibrosis mutant deltaF508-CFTR. Cell Physiol. Biochem. 24, 347–360.

    Article  PubMed  CAS  Google Scholar 

  14. Blaydes, J. P., Vojtesek, B., Bloomberg, G. B., and Hupp, T. R. (2000) The development and use of phospho-specific antibodies to study protein phosphorylation. Methods Mol. Biol. 99, 177–189.

    PubMed  CAS  Google Scholar 

  15. Hegedus, T., Aleksandrov, A., Mengos, A., Cui, L., Jensen, T. J., and Riordan, J. R. (2009) Role of individual R domain phosphorylation sites in CFTR regulation by protein kinase A. Biochim. Biophys. Acta 1788, 1341–1349.

    Article  PubMed  CAS  Google Scholar 

  16. Zhou, H., Watts, J. D., and Aebersold, R. (2001) A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol. 19, 375–378.

    Article  PubMed  CAS  Google Scholar 

  17. Carr, S. A., Huddleston, M. J., and Annan, R. S. (1996) Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. Anal. Biochem. 239, 180–192.

    Article  PubMed  CAS  Google Scholar 

  18. Bloom, N., Sicheritz-Ponten, T., Gupta, R., Gammeltoft, S., and Brunak, S. (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4, 1633–1649.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. William Reenstra for the past sharing of his laboratory protocols for CFTR in vitro and in vivo phosphorylation. This work was supported by an American Heart Association Postdoctoral Fellowship (AHA 0825540D) to R.A., by the National Institutes of Health (T32 HL007563 to J.D.K. and R01 DK075048 to K.R.H.) and by the Cystic Fibrosis Foundation (HALLOW06P0 to K.R.H.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Alzamora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Alzamora, R., King, J.D., Hallows, K.R. (2011). CFTR Regulation by Phosphorylation. In: Amaral, M., Kunzelmann, K. (eds) Cystic Fibrosis. Methods in Molecular Biology, vol 741. Humana Press. https://doi.org/10.1007/978-1-61779-117-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-117-8_29

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-116-1

  • Online ISBN: 978-1-61779-117-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics