Skip to main content

Biochemical Systems Analysis of Signaling Pathways to Understand Fungal Pathogenicity

  • Protocol
  • First Online:
Yeast Genetic Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 734))

Abstract

Over the past decade, researchers have recognized the need to study biological systems as integrated systems. While the reductionist approaches of the past century have made remarkable advances of our understanding of life, the next phase of understanding comes from systems-level investigations. Additionally, biology has become a data-intensive field of research. The introduction of high throughput sequencing, microarrays, high throughput proteomics, metabolomics, and now lipidomics are producing significantly more data than can be interpreted using existing methods. The field of systems biology brings together methods from computer science, modeling, statistics, engineering, and biology to explore the volumes of data now being produced and to develop mathematical representations of metabolic, signaling, and gene regulatory systems. Advances in these methods are allowing biologists to develop new insights into the complexities of life, to predict cellular responses and treatment outcomes, and to effectively plan experiments that extend our understanding. In this chapter, we are providing the basic steps of developing and analyzing a small S-system model of a biochemical pathway related to sphingolipid metabolism in the regulation of virulence of the human fungal microbial pathogen Cryptococcus neoformans (Cn).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alspaugh, J. A., Pukkila-Worley, R., Harashima, T., Cavallo, L. M., Funnell, D., Cox, G. M., Perfect, J. R., Kronstad, J. W., and Heitman, J. (2002) Adenylyl cyclase functions downstream of the Galpha protein Gpa1 and controls mating and pathogenicity of Cryptococcus neoformans. Eukaryot. Cell 1, 75–84.

    Google Scholar 

  2. Chang, Z. L., Netski, D., Thorkildson, P., and Kozel, T. R. (2006) Binding and internalization of glucuronoxylomannan, the major capsular polysaccharide of Cryptococcus neoformans, by murine peritoneal macrophages. Infect Immun 74, 144–51.

    Google Scholar 

  3. Cramer, K. L., Gerrald, Q. D., Nichols, C. B., Price, M. S., and Alspaugh, J. A. (2006) Transcription factor Nrg1 mediates capsule formation, stress response, and pathogenesis in Cryptococcus neoformans. Eukaryot Cell 5, 1147–56.

    Google Scholar 

  4. D'Souza, C. A., Alspaugh, J. A., Yue, C., Harashima, T., Cox, G. M., Perfect, J. R., and Heitman, J. (2001) Cyclic AMP–dependent protein kinase controls virulence of the fungal pathogen Cryptococcus neoformans. Mol Cell Biol 21, 3179–91.

    Google Scholar 

  5. Kerry, S., TeKippe, M., Gaddis, N. C., and Aballay, A. (2006) GATA transcription factor required for immunity to bacterial and fungal pathogens. PLoS One 1, e77.

    Google Scholar 

  6. Klengel, T., Liang, W. J., Chaloupka, J., Ruoff, C., Schroppel, K., Naglik, J. R., Eckert, S. E., Mogensen, E. G., Haynes, K., Tuite, M. F., Levin, L. R., Buck, J., and Muhlschlegel, F. A. (2005) Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr. Biol. 15, 2021–6.

    Google Scholar 

  7. Ko, Y. J., Yu, Y. M., Kim, G. B., Lee, G. W., Maeng, P. J., Kim, S., Floyd, A., Heitman, J., and Bahn, Y. S. (2009) Remodeling of global transcription patterns of Cryptococcus neoformans genes mediated by the stress–activated HOG signaling pathways. Eukaryot Cell 8, 1197–217.

    Google Scholar 

  8. Langfelder, K., Streibel, M., Jahn, B., Haase, G., and Brakhage, A. A. (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38, 143–58.

    Google Scholar 

  9. Maeng, S., Ko, Y. J., Kim, G. B., Jung, K. W., Floyd, A., Heitman, J., and Bahn, Y. S. (2010) Comparative Transcriptome Analysis Reveals Novel Roles of the Ras and Cyclic AMP Signaling Pathways in Environmental Stress Response and Antifungal Drug Sensitivity in Cryptococcus neoformans. Eukaryot Cell 9, 360–78.

    Google Scholar 

  10. McQuiston, T., Luberto, C., and Del Poeta, M. (2010) The role of host sphingosine kinase 1 (SK1) in the lung response against cryptococcosis. Infect Immun.

    Google Scholar 

  11. Nichols, C. B., Ferreyra, J., Ballou, E. R., and Alspaugh, J. A. (2009) Subcellular localization directs signaling specificity of the Cryptococcus neoformans Ras1 protein. Eukaryot Cell 8, 181–9.

    Google Scholar 

  12. O'Meara, T. R., Norton, D., Price, M. S., Hay, C., Clements, M. F., Nichols, C. B., and Alspaugh, J. A. (2010) Interaction of Cryptococcus neoformans Rim101 and protein kinase A regulates capsule. PLoS Pathog 6, e1000776.

    Google Scholar 

  13. Palmer, D. A., Thompson, J. K., Li, L., Prat, A., and Wang, P. (2006) Gib2, a novel Gbeta–like/RACK1 homolog, functions as a Gbeta subunit in cAMP signaling and is essential in Cryptococcus neoformans. J Biol Chem 281, 32596–605.

    Google Scholar 

  14. Shea, J. M., and Del Poeta, M. (2006) Lipid signaling in pathogenic fungi. Curr Opin Microbiol 9, 352–8.

    Google Scholar 

  15. Siafakas, A. R., Sorrell, T. C., Wright, L. C., Wilson, C., Larsen, M., Boadle, R., Williamson, P. R., and Djordjevic, J. T. (2007) Cell wall–linked cryptococcal phospholipase B1 is a source of secreted enzyme and a determinant of cell wall integrity. J Biol Chem 282, 37508–14.

    Google Scholar 

  16. Wang, P., Perfect, J. R., and Heitman, J. (2000) The G–protein beta subunit GPB1 is required for mating and haploid fruiting in Cryptococcus neoformans. Mol Cell Biol 20, 352–62.

    Google Scholar 

  17. Waugh, M. S., Vallim, M. A., Heitman, J., and Andrew Alspaugh, J. (2003) Ras1 controls pheromone expression and response during mating in Cryptococcus neoformans. Fungal Genet Biol 38, 110–21.

    Google Scholar 

  18. Heung, L. J., Luberto, C., Plowden, A., Hannun, Y. A., and Del Poeta, M. (2004) The sphingolipid pathway regulates protein kinase C 1 (Pkc1) through the formation of diacylglycerol (DAG) in Cryptococcus neoformans. J. Biol. Chem. 279, 21144–53.

    Google Scholar 

  19. Luberto, C., Toffaletti, D. L., Wills, E. A., Tucker, S. C., Casadevall, A., Perfect, J. R., Hannun, Y. A., and Del Poeta, M. (2001) Roles for inositol–phosphoryl ceramide synthase 1 (IPC1) in pathogenesis of C. neoformans. Genes Dev. 15, 201–12.

    Google Scholar 

  20. Heung, L. J., Kaiser, A. E., Luberto, C., and Del Poeta, M. (2005) The role and mechanism of diacylglycerol–protein kinase C1 signaling in melanogenesis by Cryptococcus neoformans. J. Biol. Chem. 280, 28547–55.

    Google Scholar 

  21. Paravicini, G., Mendoza, A., Antonsson, B., Cooper, M., Losberger, C., and Payton, M. A. (1996) The Candida albicans PKC1 gene encodes a protein kinase C homolog necessary for cellular integrity but not dimorphism. Yeast 12, 741–56.

    Google Scholar 

  22. Watanabe, M., Chen, C. Y., and Levin, D. E. (1994) Saccharomyces cerevisiae PKC1 encodes a protein kinase C (PKC) homolog with a substrate specificity similar to that of mammalian PKC. J Biol Chem 269, 16829–36.

    Google Scholar 

  23. Casadevall, A., and Perfect, J. R. (1998) Cryptococcus neoformans, ASM Press, Washington, DC, 381–405.

    Google Scholar 

  24. Perfect, J. R. (2005) Cryptococcus neoformans: a sugar–coated killer with designer genes. FEMS Immunol Med Microbiol 45, 395–404.

    Google Scholar 

  25. Wang, Y., Aisen, P., and Casadevall, A. (1995) Cryptococcus neoformans melanin and virulence: mechanism of action. Infect. Immun. 63, 3131–6.

    Google Scholar 

  26. Mednick, A. J., Nosanchuk, J. D., and Casadevall, A. (2005) Melanization of Cryptococcus neoformans affects lung inflammatory responses during cryptococcal infection. Infect Immun 73, 2012–9.

    Google Scholar 

  27. Nosanchuk, J. D., Rosas, A. L., and Casadevall, A. (1998) The antibody response to fungal melanin in mice. J Immunol 160, 6026–31.

    Google Scholar 

  28. Kwon–Chung, K. J., Polacheck, I., and Popkin, T. J. (1982) Melanin–lacking mutants of Cryptococcus neoformans and their virulence for mice. J. Bacteriol. 150, 1414–21.

    Google Scholar 

  29. Salas, S. D., Bennett, J. E., Kwon–Chung, K. J., Perfect, J. R., and Williamson, P. R. (1996) Effect of the laccase gene CNLAC1, on virulence of Cryptococcus neoformans. J Exp Med 184, 377–86.

    Google Scholar 

  30. Noverr, M. C., Williamson, P. R., Fajardo, R. S., and Huffnagle, G. B. (2004) CNLAC1 is required for extrapulmonary dissemination of Cryptococcus neoformans but not pulmonary persistence. Infect. Immun. 72, 1693–9.

    Google Scholar 

  31. Savageau, M. A. (1969) Biochemical systems analysis. II. The steady–state solutions for an n–pool system using a power–law approximation. J Theor Biol 25, 370–9.

    Google Scholar 

  32. Savageau, M. A. (1969) Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions. J Theor Biol 25, 365–9.

    Google Scholar 

  33. Sorribas, A., and Savageau, M. A. (1989) Strategies for representing metabolic pathways within biochemical systems theory: reversible pathways. Math Biosci 94, 239–69.

    Google Scholar 

  34. Shiraishi, F., and Savageau, M. A. (1992) The tricarboxylic acid cycle in Dictyostelium discoideum. I. Formulation of alternative kinetic representations. J Biol Chem 267, 22912–8.

    Google Scholar 

  35. Voit, E. O. (2000) Computational Analysis of Biochemical System. A practical guide for biochemists and Molecular Biologists., Cambridge University Press.

    Google Scholar 

  36. Alvarez–Vasquez, F., Sims, K. J., Cowart, L. A., Okamoto, Y., Voit, E. O., and Hannun, Y. A. (2005) Simulation and validation of modelled sphingolipid metabolism in Saccharomyces cerevisiae. Nature 433, 425–30.

    Google Scholar 

  37. Alvarez–Vasquez, F., Sims, K. J., Hannun, Y. A., and Voit, E. O. (2004) Integration of kinetic information on yeast sphingolipid metabolism in dynamical pathway models. J Theor Biol 226, 265–91.

    Google Scholar 

  38. Garcia, J., Shea, J., Alvarez–Vasquez, F., Qureshi, A., Luberto, C., Voit, E. O., and Del Poeta, M. (2008) Mathematical modeling of pathogenicity of Cryptococcus neoformans. Molecular System Biology 4, 183–95.

    Google Scholar 

  39. Macura, N., Zhang, T., and Casadevall, A. (2007) Dependence of macrophage phagocytic efficacy on antibody concentration. Infect Immun 75, 1904–15.

    Google Scholar 

  40. Sims, K. J., Alvarez–Vasquez, F., Voit, E. O., and Hannun, Y. A. (2007) A guide to biochemical systems modeling of sphingolipids for the biochemist. Methods Enzymol 432, 319–50.

    Google Scholar 

  41. Wang, Y., Aisen, P., and Casadevall, A. (1996) Melanin, melanin "ghosts," and melanin composition in Cryptococcus neoformans. Infect Immun 64, 2420–4.

    Google Scholar 

  42. Wang, Y., and Casadevall, A. (1996) Susceptibility of melanized and nonmelanized Cryptococcus neoformans to the melanin–binding compounds trifluoperazine and chloroquine. Antimicrob Agents Chemother 40, 541–5.

    Google Scholar 

  43. Polacheck, I., Hearing, V. J., Kwon–Chung, K. J., Csukai, M., Chen, C. H., De Matteis, M. A., and Mochly–Rosen, D. (1982) Biochemical studies of phenoloxidase and utilization of catecholamines in Cryptococcus neoformans. J Bacteriol 150, 1212–20.

    Google Scholar 

  44. Chou, I. C., and Voit, E. O. (2009) Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Math Biosci 219, 57–83.

    Google Scholar 

  45. Goel, G., Chou, I. C., and Voit, E. O. (2006) Biological systems modeling and analysis: a biomolecular technique of the twenty–first century. J Biomol Tech 17, 252–69.

    Google Scholar 

  46. Goel, G., Chou, I. C., and Voit, E. O. (2008) System estimation from metabolic time–series data. Bioinformatics 24, 2505–11.

    Google Scholar 

  47. Voit, E. O., and Almeida, J. (2004) Decoupling dynamical systems for pathway identification from metabolic profiles. Bioinformatics 20, 1670–81.

    Google Scholar 

  48. Fischl, A. S., Liu, Y., Browdy, A., and Cremesti, A. E. (2000) Inositolphosphoryl ceramide synthase from yeast. Methods Enzymol. 311, 123–30.

    Google Scholar 

  49. Savageau, M. A. (1975) Optimal design of feedback control by inhibition: dynamic considerations. J Mol Evol 5, 199–222.

    Google Scholar 

  50. Ferreira, A. (2000), pp. Power Law Analysis and Simulation (PLAS). http://www.dqb.fc.ul.pt/docentes/aferreira/plas.html.

  51. Vera, J., Sun, C., Oertel, Y., and Wolkenhauer, O. (2007) PLMaddon: a power–law module for the Matlab SBToolbox. Bioinformatics 23, 2638–40.

    Google Scholar 

  52. Gerik, K. J., Bhimireddy, S. R., Ryerse, J. S., Specht, C. A., and Lodge, J. K. (2008) PKC1 is essential for protection against both oxidative and nitrosative stresses, cell integrity, and normal manifestation of virulence factors in the pathogenic fungus Cryptococcus neoformans. Eukaryot Cell 7, 1685–98.

    Google Scholar 

  53. Gerik, K. J., Donlin, M. J., Soto, C. E., Banks, A. M., Banks, I. R., Maligie, M. A., Selitrennikoff, C. P., and Lodge, J. K. (2005) Cell wall integrity is dependent on the PKC1 signal transduction pathway in Cryptococcus neoformans. Mol Microbiol 58, 393–408.

    Google Scholar 

  54. Voit, E. O., and Savageau, M. A. (1987) Accuracy of alternative representations for integrated biochemical systems. Biochemistry 26, 6869–80.

    Google Scholar 

  55. Savageau, M. A. (1971) Parameter sensitivity as a criterion for evaluating and comparing the performance of biochemical systems. Nature 229, 542–4.

    Google Scholar 

  56. Wu, W. I., McDonough, V. M., Nickels, J. T., Jr., Ko, J., Fischl, A. S., Vales, T. R., Merrill, A. H., Jr., and Carman, G. M. (1995) Regulation of lipid biosynthesis in Saccharomyces cerevisiae by fumonisin B1. J Biol Chem 270, 13171–8.

    Google Scholar 

Download references

Acknowledgments

This work was supported by Grants AI56168 and AI72142 (to M.D.P) and was conducted in a facility constructed with support from the National Institutes of Health, Grant Number C06 RR015455 from the Extramural Research Facilities Program of the National Center for Research Resources. Kellie J Sims is funded by Grant 5K12GM081265-03, an Institutional Research and Academic Career Development Award (IRACDA) program from NIGMS. John H. Schwacke is supported in part by a contract from the National Institutes of Health, National Heart Lung and Blood Institute (NHLBI NO1-HV-28181). Dr. Maurizio Del Poeta is a Burroughs Wellcome New Investigator in Pathogenesis of Infectious Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Del Poeta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Garcia, J., Sims, K.J., Schwacke, J.H., Del Poeta, M. (2011). Biochemical Systems Analysis of Signaling Pathways to Understand Fungal Pathogenicity. In: Becskei, A. (eds) Yeast Genetic Networks. Methods in Molecular Biology, vol 734. Humana Press. https://doi.org/10.1007/978-1-61779-086-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-086-7_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-085-0

  • Online ISBN: 978-1-61779-086-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics