Skip to main content

Stochastic Analysis of Gene Expression

  • Protocol
  • First Online:
Yeast Genetic Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 734))

Abstract

In this chapter, stochasticity in gene expression is investigated using \( \Omega \)-expansion technique. Two theoretical models are considered here, one concern the stochastic fluctuations in a single-gene network with negative feedback regulation, and the other the additivity of noise propagation in a protein cascade. All of these theoretical analyses may provide a basic framework for understanding stochastic gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paulsson, J. (2005) Models of stochastic gene expression Physics of Life Reviews 2, 157–175.

    Google Scholar 

  2. Ozbudark, E.M., Thattai, M., Kurster, I., Grossman, A.D., van Oudenaarden, A. (2002) Regulation of noise in the expression of a single gene Nat Genet 31, 67–73.

    Google Scholar 

  3. Rigney, D.R. and Schieve, W.C. (1977) Stochastic model of linear, continuous protein-synthesis in bacterial populations J Theor Biol 69, 761–766.

    Google Scholar 

  4. Berg, O.G. (1978) A model for statistical fluctuations of protein numbers in a microbial-population J Theor Biol 73, 307–320.

    Google Scholar 

  5. McAdams, H.H. and Arkin, A. (1997) Stochastic mechanisms in gene expression Proc Natl Acad Sci USA 94, 814–819.

    Google Scholar 

  6. Thattai, M. and A. van Oudenaarden. (2001) Intrinsic noise in gene regulatory networks Proc Natl Acad Sci USA 98, 8614–8616.

    Google Scholar 

  7. Paulsson, J. and Ehrenberg, M. (2000) Random signal fluctuations can reduce random fluctuations in regulated components of chemical regulatory networks Phys Rev Lett 84, 5447–5450.

    Google Scholar 

  8. Paulsson, J. and Ehrenberg, M. (2001) Intrinsic noise in gene regulatory networks Q Rev Biophys 34, 1–59.

    Google Scholar 

  9. Paulsson, J. (2004) Summing up the noise in gene networks Nature 29, 415–418.

    Google Scholar 

  10. Elowitz, M.B., Levine, A.J., Siggia, E.D., Swian, P.S. (2002) Stochastic gene expression in a single cell Science 297, 183–186.

    Google Scholar 

  11. Blake, W.J., Kaern, M., Canto, C.R., Collins, J.J. (2003) Noise in eukaryotic gene expression Nature 422, 633–637.

    Google Scholar 

  12. Elf, J.and Ehrenberg, M. (2003) Fast evaluation of fluctuations in biochemical networks with the linear noise approximation Gemome Res 13, 2475–2484.

    Google Scholar 

  13. Kaern, M., Elston, T.C., Blake, W.J., Collins, J.J. (2005) Stochasticity in gene expression: from theories to phenotypes Nat Rev Genet 6, 451–464.

    Google Scholar 

  14. Raj, A., van Oudenaarden, A. (2008) Nature, nurture, or chance: stochastic gene expression and its consequences Cell 135, 216–226.

    Google Scholar 

  15. Becskei, A., Serrano, L. (2000) Engineering stability in gene networks by autoregulation Nature 405, 590–593.

    Google Scholar 

  16. Tao, Y., Zheng, X-D., Sun, Y-H. (2007) Effect of feedback regulation on stochastic gene expression J Theor Biol 247, 827–836.

    Google Scholar 

  17. Gardner, T.S., Cantor, C.R., Collins, J.J. (2001) Construction of a genetic toggle switch in Escherichia coli Nature 403, 339–342.

    Google Scholar 

  18. Cherry, J.L. and Adler, F.R. (2000) How to make a biological switch J Theor Biol 203, 117–133.

    Google Scholar 

  19. Shea, M., Ackers, G.K. (1985) The OR control system of bacteriophage lambda. A physical-chemical model for gene regulation J Mol Biol 181, 211–230.

    Google Scholar 

  20. van Kampen, N. G. (1992) Stochastic Process Theory in Physics and Chemistry Amsterdam: North-Holland.

    Google Scholar 

  21. Tao, Y. (2004) Intrinsic and external noise in an auto-regulatory genetic network J Theor Biol 229, 147–156.

    Google Scholar 

  22. Gillespie, D. T. (1977) Exact stochastic simulation of coupled chemical reactions J Phys Chem 81, 2340–2361.

    Google Scholar 

  23. Gillespie, D.T. (2007) Stochastic simulation of chemical kinetics Annu Rev Phys Chem 58, 35–55.

    Google Scholar 

  24. Thattai, M. and van Oudenaarden. A. (2002) Attenuation of noise in ultrasensitive signaling cascades Biophys J 82, 2943–2950.

    Google Scholar 

  25. Lee, T. L., Rinaldi, N. J., Robert, F., Odom, D. T., Bar-Joseph, Z., Gerber, G. K., Hannett, N. M., Harbison, C. T., Thompson, C. M., Simon, I. et al. (2002) Transcriptional regulatory networks in saccharomyces cerevisiae Science 298, 799–804.

    Google Scholar 

  26. Shen-Orr, S. S., Milo, R., Mangan, S., Alon, U. (2002) Network motifs in the transcriptional regulation network of Escherichia coli Nat Genet 31, 64–68.

    Google Scholar 

  27. Rosenfeld, N. and Alon, U. (2003) Response delays and the structure of transcription networks J Mol Biol 329, 645–654.

    Google Scholar 

  28. Hooshangi, S., Thiberge, S., Weiss, R. (2005) Ultrasensitivity and noise propagation in a synthetic transcriptional cascade Proc Natl Acad Sci USA 102, 3581–3586.

    Google Scholar 

  29. Pedraza, J. M. van Oudenaarden, A. (2005) Noise propagation in gene networks Science 307, 1965–1969.

    Google Scholar 

  30. Chen, G-N. (1990) Matrix Theory and Application Beijing: High Education Press, 1990 (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Tao .

Editor information

Editors and Affiliations

Appendix

Appendix

Derivation of Eq. 43 . To derive Eq. 43, we first introduce two theorems about the matrix equation in the following.

Theorem 1. The matrix equation \( {\mathbf{AX + XB = C}} \) with \( {\mathbf{A,B,C}} \in {{\mathbf{C}}^{n \times n}} \) has a solution \( {\mathbf{X}}, \) if and only if \( \left[ {\begin{array}{*{20}{c}} {\mathbf{A}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{B}} \\ \end{array} } \right] \) and \( \left[ {\begin{array}{*{20}{c}} {\mathbf{A}} & {\mathbf{C}} \\ {\mathbf{0}} & {\mathbf{B}} \\ \end{array} } \right] \) are similar (30).

Theorem 2. If all the eigenvalues of \( {\mathbf{A}} \) and \( {\mathbf{B}} \) have nonnegative real parts, then the matrix equation \( {\mathbf{AX + XB = C}} \) has a unique solution \( X = - \int_0^\infty {{{\hbox{e}}^{{\mathbf{A}}t}}{\mathbf{C}}{{\hbox{e}}^{{\mathbf{B}}t}}} {\hbox{d}}t \) (30).

Notice that in Eqs. 40 and 41, the Jacobian matrix \( {\mathbf{A}} \) satisfies Theorem 1. Thus, the matrix equation \( {\mathbf{A\Xi }} + {\mathbf{\Xi }}{{\mathbf{A}}^T}{\mathbf{+ B = 0}} \) must have a solution. Notice also that all the possible eigenvalues of \( {\mathbf{A}} \) are negative. Thus, from Theorem 2, we have Eq. 43.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zheng, XD., Tao, Y. (2011). Stochastic Analysis of Gene Expression. In: Becskei, A. (eds) Yeast Genetic Networks. Methods in Molecular Biology, vol 734. Humana Press. https://doi.org/10.1007/978-1-61779-086-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-086-7_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-085-0

  • Online ISBN: 978-1-61779-086-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics