Skip to main content

Polymeric Nanoparticles for Photodynamic Therapy

  • Protocol
  • First Online:
Biomedical Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 726))

Abstract

Photodynamic therapy is a relatively new clinical therapeutic modality that is based on three key components: photosensitizer, light, and molecular oxygen. Nanoparticles, especially targeted ones, have recently emerged as an efficient carrier of drugs or contrast agents, or multiple kinds of them, with many advantages over molecular drugs or contrast agents, especially for cancer detection and treatment. This paper describes the current status of PDT, including basic mechanisms, applications, and challenging issues in the optimization and adoption of PDT; as well as recent developments of nanoparticle-based PDT agents, their advantages, designs and examples of in vitro and in vivo applications, and demonstrations of their capability of enhancing PDT efficacy over existing molecular drug-based PDT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel, M. M., Tabei, K., Tsao, R., Pastel, M. J., Pandey, R. K., Berkenkamp, S., et al. (1999) Comparative mass spectrometric analyses of photofrin oligomers by fast atom bombardment mass spectrometry, UV and IR matrix-assisted laser desorption/ionization mass spectrometry, electrospray ionization mass spectrometry and laser desorption/jet-cooling photoionization mass spectrometry. J. Mass Spectrom. 34, 661–669.

    CAS  Google Scholar 

  2. Mitton, D. and Ackroyd, R. (2008) A brief overview of photodynamic therapy in Europe. Photodiagn. Photodyn. Ther. 5, 103–111.

    CAS  Google Scholar 

  3. Dolmans, D. E. J. G. J., Fukumura, D., and Jain, R. K. (2003) Photodynamic therapy for cancer. Nat. Rev. Cancer 3, 380–387.

    CAS  Google Scholar 

  4. Brown, S. B., Brown, E. A., and Walker, I. (2004) The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. 5, 497–508.

    CAS  Google Scholar 

  5. Wilson, B. C. and Patterson, M. S. (2008) The physics, biophysics and technology of photodynamic therapy. Phys. Med. Biol. 53, R61–R109.

    CAS  Google Scholar 

  6. Buytaert, E., Dewaele, M., and Agostinis, P. (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim. Biophys. Acta 1776, 86–107.

    CAS  Google Scholar 

  7. Foote, C. S. (1991) Definition of type I and type II photosensitized oxidation. Photochem. Photobiol. 54, 659.

    CAS  Google Scholar 

  8. Niedre, M., Patterson, M. S., and Wilson, B. C. (2002) Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo. Photochem. Photobiol. 75, 382–391.

    CAS  Google Scholar 

  9. Tsushima, M., Tokuda, K., and Ohsaka, T. (1994) Use of hydrodynamic chronocoulometry for simultaneous determination of diffusion-coefficients and concentrations of dioxygen in various media. Anal. Chem. 66, 4551–4556.

    CAS  Google Scholar 

  10. Pryor, W. A. (1986) Oxy-radicals and related species: their formation, lifetimes, and reactions. Ann. Rev. Physiol. 48, 657–667.

    CAS  Google Scholar 

  11. Morgan, J. and Oseroff, A. R. (2001) Mitochondria-based photodynamic anti-cancer therapy. Adv. Drug Deliv. Rev. 49, 71–86.

    CAS  Google Scholar 

  12. Eljamel, M. S., Goodman, C., and Moseley, H. (2008) ALA and Photofrin® fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: a single centre Phase III randomised controlled trial. Lasers Med. Sci. 23, 361–367.

    Google Scholar 

  13. Vogel, A. and Venugopalan, V. (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103, 577–644.

    CAS  Google Scholar 

  14. Stolik, S., Delgado, J. A., Perez, A., and Anasagasti, L. (2000) Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues. J. Photochem. Photobiol. 57, 90–93.

    CAS  Google Scholar 

  15. Svaasand, L. O., Gomer, C. J., and Profio, A. E. (1989) Laser-induced hyperthermia of ocular tumors. Appl. Opt. 28, 2280–2287.

    CAS  Google Scholar 

  16. Muller, P. J. and Wilson, B. C. (1987) Photodynamic therapy of malignant primary braintumours: clinical effects, postoperative ICP, and light penetration in the brain. Photochem. Photobiol. 46, 929–935.

    CAS  Google Scholar 

  17. Dougherty, T. J., Weishaupt, K. R., and Boyle, D. G. (1985) Photodynamic sensitizers. in: Cancer: Principles and Practice of Oncology (DeVita, Jr., V. T. and Rosenberg, S. A., eds.) pp. 2272–2279, J. B. Lippincott Company, Philadelphia.

    Google Scholar 

  18. Kavar, B. and Kaye, A. H. (2007) Photodynamic therapy. in: High-Grade Gliomas: Diagnosis and Treatment (Barnett, G. E., Ed.) pp. 461–484, Humana Press, Totowa.

    Google Scholar 

  19. http://www.accessdata.fda.gov/drugsatfda_docs/label/2008/020451s019lbl.pdf.

  20. http://www.photofrin.com/pdf/patientguide.pdf.

  21. Starkey, J. R., Rebane, A. K., Drobizhev, M. A., Meng, F., Gong, A., Elliott, A., et al. (2008) New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IRLaser treatment, through the body of the host mouse. Clin. Cancer Res. 14, 6564–6573.

    CAS  Google Scholar 

  22. Mir, Y., Houde, D., and van Lier, J. E. (2008) Photodynamic inhibition of acetylcholinesterase after two-photon excitation of copper tetrasulfophthalocyanine. Lasers Med. Sci. 23, 19–25.

    Google Scholar 

  23. Josefsen, L. B. and Boyle, R. W. (2008) Photodynamic therapy: novel third-generation photosensitizers one step closer? Br. J. Pharmacol. 154, 1–3.

    CAS  Google Scholar 

  24. http://www.dusapharma.com/levulan-prescribing-information.html.

  25. http://www.biolitecpharma.com/public/smpc.asp?s=foscan.

  26. Dolmans, D. E. J. G. J., Kadambi, A., Hill, J. S., Flores, K. R., Gerber, J. N., Walker, J. P., et al. (2002) Targeting tumor vasculature and cancer cells in orthotopic breast tumor by fractionated photosensitizer dosing photodynamic therapy. Cancer Res. 62, 4289–4294.

    CAS  Google Scholar 

  27. Seshadri, M., Bellnier, D. A., Vaughan, L. A., Spernyak, J. A., Mazurchuk, R., Foster, T. H., et al. (2008) Light delivery over extended time periods enhances the effectiveness of PDT. Clin. Cancer Res. 14, 2796–2805.

    CAS  Google Scholar 

  28. Henderson, B. W., Busch, T. M., and Snyder, J. W. (2006) Fluence rate as a modulator of PDT mechanism. Laser Surg. Med. 18, 489–493.

    Google Scholar 

  29. Koo, Y. L., Reddy, G. R., Bhojani, M., Schneider, R., Philbert, M. A., Rehemtulla, A., et al. (2006) Brain cancer diagnosis and therapy with nano-platforms. Adv. Drug Deliv. Rev. 58, 1556–1577.

    CAS  Google Scholar 

  30. Redmond, R. W., Land, E. J., and Truscott, T. G. (1985) Aggregation effects on the photophysical properties of porphyrins in relation to mechanisms involved in photodynamic therapy. Adv. Exp. Med. Biol. 193, 293–302.

    CAS  Google Scholar 

  31. Severino, D., Junqueira, H. C., Gugliotti, M., Gabrielli, D. S., and Baptista, M. S. (2003) Influence of negatively charged interfaces on the ground and excited state properties of methylene blue. Photochem. Photobiol. 77, 459–468.

    CAS  Google Scholar 

  32. Takakura, Y., Mahato, R. I., and Hashida, M. (1998) Extravasation of macromolecules. Adv. Drug Deliv. Rev. 34, 93–108.

    CAS  Google Scholar 

  33. Weissleder, R., Bogdanov Jr., A., Tung, C. H., and Weinmann, H. J. (2001) Size optimization of synthetic graft copolymers for in vivo angiogenesis imaging. Bioconjug. Chem. 12, 213–219.

    CAS  Google Scholar 

  34. Gaumet, M., Vargas, A., Gurny, R., and Delie, F. (2008) Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm. 69, 1–9.

    CAS  Google Scholar 

  35. Maeda, H. (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41, 189–207.

    CAS  Google Scholar 

  36. Matsumura, Y. and Maeda, H. (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392.

    CAS  Google Scholar 

  37. Vinogradov, S. V., Bronich, T. K., and Kabanov, A. V. (2002) Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv. Drug Deliv. Rev. 54, 135–147.

    CAS  Google Scholar 

  38. Davis, M. E., Chen, Z., and Shin, D. M. (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7, 771–782.

    CAS  Google Scholar 

  39. Jain, R. K. (2001) Delivery of molecular and cellular medicine to solid tumors. Adv. Drug Deliv. Rev. 46, 149–168.

    CAS  Google Scholar 

  40. Moffat, B. A., Reddy, G. R., McConville, P., Hall, D. E., Chenevert, T. L., Kopelman, R. R., et al. (2003) A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI. Mol. Imaging 2, 324–332.

    CAS  Google Scholar 

  41. Porkka, K., Laakkonen, P., Hoffman, J. A., Bernasconi, M., and Ruoslahti, E. (2002) A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc. Natl. Acad. Sci. U S A 99, 7444–7449.

    CAS  Google Scholar 

  42. Allen, T. M. (2002) Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer 2, 750–763.

    CAS  Google Scholar 

  43. Reddy, G. R., Bhojani, M. S., McConville P., Moody, J., Moffat, B. A., Hall, D. E., et al. (2006) Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin. Cancer Res. 12, 6677–6686.

    CAS  Google Scholar 

  44. Costantino, L., Gandolfi, F., Tosi, G., Rivasi, F., Vandelli, M. A., and Forni, F. (2005) Peptide-derivatized biodegradable nanoparticles able to cross the blood–brain barrier. J. Controlled Release 108, 84–96.

    CAS  Google Scholar 

  45. Hong, S., Leroueil, P. R., Majoros, I. J., Orr, B. G., Baker, J. R., and Holl, M. M. B. (2007) The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem. Biol. 14, 107–115.

    CAS  Google Scholar 

  46. Montet, X., Funovics, M., Montet-Abou, K., Weissleder, R., and Josephson, L. (2006) Multivalent effects of RGD peptides obtained by nanoparticle display. J. Med. Chem. 49, 6087–6093.

    CAS  Google Scholar 

  47. Tang, W., Xu, H., Park, E. J., Philbert, M. A., and Kopelman, R. (2008) Encapsulation of methylene blue in polyacrylamide nanoparticle platforms protects its photodynamic effectiveness. Biochem. Biophys. Res. Commun. 369, 579–583.

    CAS  Google Scholar 

  48. Chen, Y., Gryshuk, A., Achilefu, S., Ohulchansky, T., Potter, W., Zhong, T., et al. (2004) A novel approach to a bifunctional photosensitizer for tumor imaging and phototherapy. Bioconjug. Chem. 8, 1105–1115.

    CAS  Google Scholar 

  49. Li, G., Slansky, A., Dobhal, M. P., Goswami, L. N., Graham, A., Chen, Y., et al. (2005) Chlorophyll-a analogues conjugated with aminophenyl-DTPA as potential bifunctional agents for magnetic resonance imaging and photodynamic therapy. Bioconjug. Chem. 16, 32–42.

    CAS  Google Scholar 

  50. Zeisser-Labouebe, M., Lange, N., Gurny, R., and Delie, F. (2006) Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer. Int. J. Pharm. 326, 174–181.

    CAS  Google Scholar 

  51. Saxena, V., Sadoqi, M., and Shao, J. (2006) Polymeric nanoparticulate delivery system for Indocyanine green: biodistribution in healthy mice. Int. J. Pharm. 308, 200–204.

    CAS  Google Scholar 

  52. Cheng, Y., Samia, A. C., Meyers, J. D., Panagopoulos, I., Fei, B., and Burda, C. (2008) Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J. Am. Chem. Soc. 130, 10643–10647.

    CAS  Google Scholar 

  53. Hu, Z., Pan, Y., Wang, J., Chen, J., Li, J., and Ren, L. (2009) Meso-tetra (carboxyphenyl) porphyrin (TCPP) nanoparticles were internalized by SW480 cells by a clathrin-mediated endocytosis pathway to induce high photocytotoxicity. Biomed. Pharmacother. 63, 155–164.

    CAS  Google Scholar 

  54. Konan, Y. N., Berton, M., Gurny, R., and Allemann, E. (2003) Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles. Eur. J. Pharm. Sci. 18, 241–249.

    CAS  Google Scholar 

  55. Konan-Kouakou, Y. N., Boch, R., Gurny, R., and Allemann, E. (2005) In vitro and in vivo activities of verteporfin-loaded nanoparticles. J. Controlled Release 103, 83–91.

    CAS  Google Scholar 

  56. Vargas, A., Pegaz, B., Debefve, E., Konan-Kouakou, Y., Lange, N., Ballini, J.-P., et al. (2004) Improved photodynamic activity of porphyrin loaded into nanoparticles: an in vivo evaluation using chick embryos. Int. J. Pharm. 286, 131–145.

    CAS  Google Scholar 

  57. Vargas, A., Lange, N., Arvinte, T., Cerny, R., Gurny, R., and Delie, F. (2009) Toward the understanding of the photodynamic activity of m-THPP encapsulated in PLGA nanoparticles: correlation between nanoparticle properties and in vivo activity. J. Drug Targeting 17, 599–609.

    CAS  Google Scholar 

  58. Pegaz, B., Debefve, E., Borle, F., Ballini, J., van den Bergh, H., and Kouakou-Konan, Y. N. (2005) Encapsulation of porphyrins and chlorins in biodegradable nanoparticles: the effect of dye lipophilicity on the extravasation and the photothrombic activity. A comparative study. J. Photochem. Photobiol. B 80, 19–27.

    CAS  Google Scholar 

  59. Pegaz, B., Debefve, E., Ballini, J., Konan-Kouakou, Y. N., and van den Bergh, H. (2006) Effect of nanoparticle size on the extravasation and the photothrombic activity of meso(p-tetracarboxyphenyl)porphyrin. J. Photochem. Photobiol. B 85, 216–222.

    CAS  Google Scholar 

  60. McCarthy, J. R., Perez, J. M., Bruckner, C., and Weissleder, R. (2005) Polymeric nanoparticle preparation that eradicates tumors. Nano Lett. 5, 2552–2556.

    CAS  Google Scholar 

  61. Tang, W., Xu, H., Kopelman, R., and Philbert, M. A. (2005) Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms. Photochem. Photobiol. 81, 242–249.

    CAS  Google Scholar 

  62. Kopelman, R., Koo, Y. L., Philbert, M., Moffat, B. A., Reddy, G. R., McConville, P., et al. (2005) Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer. J. Magn. Magn. Mater. 293, 404–410.

    CAS  Google Scholar 

  63. Gao, D., Agayan, R. R., Xu, H., Philbert, M. A., and Kopelman R. (2006) Nanoparticles for two-photon photodynamic therapy in living cells. Nano Lett. 6, 2383–2386.

    CAS  Google Scholar 

  64. Gao, D., Xu, H., Philbert, M. A., and Kopelman R. (2007) Ultrafine hydrogel particles: synthetic approach and therapeutic application in living cells. Angew. Chem. Int. Ed. 46, 2224–2227.

    CAS  Google Scholar 

  65. Ross, B., Rehemtulla, A., Koo, Y. L., Reddy, G. R., Behrend, C., Buck, S., et al. (2004) Photonic and magnetic nanoexplorers for biomedical use: from subcellular imaging to cancer diagnostics and therapy. Proc. SPIE 5331, 76–83.

    CAS  Google Scholar 

  66. Wu, J. F., Hao, X., Wei, T., Kopelman, R., Philbert, M. A., and Xi, C. (2009) Eradication of bacteria in suspension and biofilms using methylene blue-loaded dynamic nanoplatforms. Antimicrob. Agents Chemother. 53, 3042–3048.

    CAS  Google Scholar 

  67. Compagnin, C., Bau, L., Mognato, M., Celotti, L., Miotto, G., Arduini, M., et al. (2009) The cellular uptake of meta-tetra (hydroxyphenyl)chlorin entrapped in organically modified silica nanoparticles is mediated by serum proteins. Nanotechnology 20, 345101.

    Google Scholar 

  68. Yan, F. and Kopelman, R. (2003) The embedding of metatetra(hydroxyphenyl)-chlorin into silica nanoparticle platforms for photodynamic therapy and their singlet oxygen production and pH dependent optical properties. Photochem. Photobiol. 78, 587–591.

    CAS  Google Scholar 

  69. Zhou, L., Dong, C., Wei, S. H., Fenga, Y. Y., Zhoua, J. H., and Liu, J. H. (2009) Water-soluble soft nano-colloid for drug delivery. Mater. Lett. 63, 1683–1685.

    CAS  Google Scholar 

  70. Ohulchanskyy, T. Y., Roy, I., Goswami, L. N., Chen, Y., Bergey, E. J., Pandey, R. K., et al. (2007) Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer. Nano Lett. 7, 2835–2842.

    CAS  Google Scholar 

  71. Rossi, L. M., Silva, P. R., Vono, L. L. R., Fernandes, A. U., Tada, D. B., and Baptista, M. S. (2008) Protoporphyrin IX nanoparticle carrier: preparation, optical properties, and singlet oxygen generation. Langmuir 24, 12534–12538.

    CAS  Google Scholar 

  72. Brevet, D., Gary-Bobo, M., Raehm, L., Richeter, S., Hocine, O., Amro, K., et al. (2009) Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy. Chem. Commun. 12, 1475–1477.

    Google Scholar 

  73. Kumar, R., Roy, I., Ohulchanskyy, T. Y., Goswami, L. N., Bonoiu, A. C., Bergey, E. J., et al. (2008) Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. ACS Nano 2, 449–456.

    CAS  Google Scholar 

  74. Kim, S., Ohulchanskyy, T. Y., Pudavar, H. E., Pandey R. K., and Prasad, P. N. (2007) Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J. Am. Chem. Soc. 129, 2669–2675.

    CAS  Google Scholar 

  75. Kim, S., Ohulchanskyy, T. Y., Bharali, D., Chen, Y., Pandey, R. K., and Prasad, P. N. (2009) Organically modified silica nanoparticles with intraparticle heavy-atom effect on the encapsulated photosensitizer for enhanced efficacy of photodynamic therapy. J. Phys. Chem. C 113, 12641–12644.

    CAS  Google Scholar 

  76. Tu, B. H., Lin, Y., Hung, Y., Lo, L., Chen, Y., and Mou, C. (2009) In vitro studies of functionalized mesoporous silica nanoparticles for photodynamic therapy. Adv. Mater. 21, 172–174.

    CAS  Google Scholar 

  77. Chen, K., Preuß, A., Hackbarth, S., Wacker, M., Langer, K., and Röder, B. (2009) Novel photosensitizer-protein nanoparticles for photodynamic therapy: photophysical characterization and in vitro investigations. J. Photochem. Photobiol. B 96, 66–74.

    CAS  Google Scholar 

  78. Deda, D. K., Uchoa, A. F., Carita, E., Baptista, M. S., Toma, H. E., and Araki, K. (2009) A new micro/nanoencapsulated porphyrin formulation for PDT treatment. Int. J. Pharm. 376, 76–83.

    CAS  Google Scholar 

  79. Khdair, A., Gerard, B., Handa, H., Mao, G., Shekhar, M. P. V., and Panyam, J. (2008) Surfactant-polymer nanoparticles enhance the effectiveness of anticancer photodynamic therapy. Mol. Pharm. 5, 795–807.

    CAS  Google Scholar 

  80. Khdair, A., Handa, H., Mao, G., and Panyam, J. (2009) Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance in vitro. Eur. J. Pharm. Biopharm. 71, 214–222.

    CAS  Google Scholar 

  81. Wieder, M. E., Hone, D. C., Cook, M. J., Handsley, M. M., Gavrilovic, J., and Russell, D. A. (2006) Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a “Trojan horse.” Photochem. Photobiol. Sci. 5, 727–734.

    CAS  Google Scholar 

  82. Lai, C., Wang, Y., Lai, C., Yang, M.-J., Chen, C.-Y., Chou, P.-T., et al. (2008) Iridium-complex-functionalized Fe3O4/SiO2 core/shell nanoparticles: a facile three-in-one system in magnetic resonance imaging, luminescence imaging, and photodynamic therapy. Small 4, 218–224.

    CAS  Google Scholar 

  83. Chen, Z., Sun, Y., Huang, P., Yang, X., and Zhou, X. (2009) Studies on preparation of photosensitizer loaded magnetic silica nanoparticles and their anti-tumor effects for targeting photodynamic therapy. Nanoscale Res. Lett. 4, 400–408.

    CAS  Google Scholar 

  84. Tada, D. B., Vono, L. L. R., Duarte, E. L., Itri, R., Kiyohara, P. K., Baptista, M. S., et al. (2007) Methylene blue-containing silica-coated magnetic particles: a potential magnetic carrier for photodynamic therapy. Langmuir 23, 8194–8199.

    CAS  Google Scholar 

  85. McCarthy, J. R., Jaffer, F. A., and Weissleder, R. (2006) A macrophage-targeted theranostic nanoparticle for biomedical applications. Small 2, 983–987.

    CAS  Google Scholar 

  86. Sun, Y., Chen, Z., Yang, X., Huang, P., Zhou, X., and Du, X. (2009) Magnetic chitosan nanoparticles as a drug delivery system for targeting photodynamic therapy. Nanotechnology 20, 135102.

    Google Scholar 

  87. Zhang, P., Steelant, W., Kumar, M., and Scholfield, M. (2007) Versatile photosensitizers for photodynamic therapy at infrared excitation. J. Am. Chem. Soc. 129, 4526–4527.

    CAS  Google Scholar 

  88. Chatterjee, D. K. and Yong, Z. (2008) Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells. Nanomedicine 3, 73–82.

    CAS  Google Scholar 

  89. Yaghini, E., Seifalian, A. M., and MacRobert, A. J. (2009) Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy. Nanomedicine 4, 353–363.

    CAS  Google Scholar 

  90. dos Santos, L. J., Alves, R. B., de Freitas, R. P., Nierengarten, J.-F., Magalhaes, L. E. F., Krambrock, K., et al. (2008) Production of reactive oxygen species induced by a new [60]fullerene derivative bearing a tetrazole unit and its possible biological applications. J. Photochem. Photobiol. A 200, 277–281.

    Google Scholar 

  91. Song, L. P., Li, H., Sunar, U., Chen, J., Corbin, I., Yodh, A. G., et al. (2007) Naphthalocyanine-reconstituted LDL nanoparticles for in vivo cancer imaging and treatment. Int. J. Nanomedicine 2, 767–774.

    CAS  Google Scholar 

  92. Suci, P. A., Varpness, Z., Gillitzer, E., Douglas, T., and Young, M. (2007) Targeting and photodynamic killing of a microbial pathogen using protein cage architectures functionalized with a photosensitizer. Langmuir 23, 12280–12286.

    CAS  Google Scholar 

  93. Xu, H., Buck, S. M., Kopelman, R., Philbert, M. A., Brasuel, M., Ross, B. D., et al. (2004) Photo-excitation based nano-explorers: chemical analysis inside live cells and photodynamic therapy. Isr. J. Chem. 44, 317–337.

    CAS  Google Scholar 

  94. Gu, H., Xu, K., Yang, Z., Changa, C. K., and Xu, B. (2005) Synthesis and cellular uptake of porphyrin decorated iron oxide nanoparticles-a potential candidate for bimodal anticancer therapy. Chem. Commun. 34, 4270–4272.

    Google Scholar 

  95. Chen, W. and Zhang, J. (2006) Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J. Nanosci. Nanotech. 6, 1159–1166.

    CAS  Google Scholar 

  96. Liu, Y. F., Chen, W., Wang, S. P., and Joly, A. G. (2008) Investigation of water-soluble X-ray luminescence nanoparticles for photodynamic activation. Appl. Phys. Lett. 92, 043901.

    Google Scholar 

  97. Moreno, M. J., Monson, E., Reddy, G. R., Rehemtulla, A., Ross, B. D., Philbert, M., et al. (2003) Production of singlet oxygen by Ru(dpp(SO3)2)3 incorporated in polyacrylamide PEBBLEs. Sens. Act. B: Chem 90, 82–89.

    Google Scholar 

  98. Cao, Y., Koo, Y.-E. L., Koo, S. M., and Kopelman, R. (2005) Ratiometric singlet oxygen nano-optodes and their use for monitoring photodynamic therapy nanoplatforms. Photochem. Photobiol. 81, 1489–1498.

    CAS  Google Scholar 

  99. Shinohara, E. T., Cao, C., Niermann, K., Mu, Y., Zeng, F., Hallahan, D. E., et al. (2005) Enhanced radiation damage of tumor vasculature by mTOR inhibitors. Oncogene 24, 5414–5422.

    CAS  Google Scholar 

  100. Gill, Z. P., Perks, C. M., Newcomb, P. V., and Holly, J. M. P. (1997) Insulin-like growth factor-binding protein (IGFBP-3) predisposes breast cancer cells to programmed cell death in a non-IGF-dependent manner. J. Biol. Chem. 272, 25602–25607.

    CAS  Google Scholar 

  101. Clark, H. A., Barker, S. L. R., Brasuel, M., Miller, M. T., Monson, E., Parus, S., et al. (1998) Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs). Sens. Act. B 51, 12–16.

    Google Scholar 

  102. Harrell, J. A. and Kopelman, R. (2000) Biocompatible probes measure intracellular activity. Biophotonics Int. 7, 22–24.

    Google Scholar 

  103. Anderson, F. A. (2005) Amended final report on the safety assessment of polyacrylamide and acrylamide residues in cosmetics. Int. J. Tox. 24(Suppl. 2), 21–50.

    Google Scholar 

  104. Jain, R. A. (2000) The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) devices. Biomaterials 21, 2475–2490.

    CAS  Google Scholar 

  105. Panyama, J. and Labhasetwar, V. (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55, 329–347.

    Google Scholar 

  106. Shive, M. S. and Anderson, J. M. (1997) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 28, 5–24.

    Google Scholar 

  107. Vargas, A., Eid, M., Fanchaouy, M., Gurny, R., and Delie, F. (2008) In vivo photodynamic activity of photosensitizer-loaded nanoparticles: formulation properties, administration parameters and biological issues involved in PDT outcome. Eur. J. Pharma. Biopharma. 69, 43–53.

    CAS  Google Scholar 

  108. Hah, H. J., Kim, J. S., Jeon, B. J., Koo, S. M., and Lee, Y. E. (2003) Simple preparation of mono-disperse hollow silica particles without using templates. Chem. Commun. 14, 1712–1713.

    Google Scholar 

  109. Qian, J., Gharibi, A., and He, S. L. (2009) Colloidal mesoporous silica nanoparticles with protoporphyrin IX encapsulated for photodynamic therapy. J. Biomed. Opt. 14, 014012.

    Google Scholar 

  110. Peng, Q., Warloe, T., Berg, K., Moan, J., Kongshaug, M., Giercksky, K.-E., et al. (1997) 5-Aminolevulinic acid-based photodynamic therapy, clinical research, and future challenges. Cancer 79, 2282–2308.

    CAS  Google Scholar 

  111. Battah, S., Balaratnam, S., Casas, A., O’Neill, S., Edwards, C., Batlle, A., et al. (2007) Macromolecular delivery of 5-aminolaevulinic acid for photodynamic therapy using dendrimer conjugates. Mol. Cancer Ther. 6, 876–885.

    CAS  Google Scholar 

  112. Casas, A., Battah, S., Di Venosa, G., Dobbin, P., Rodriguez, L., Fukuda, A., et al. (2009) Sustained and efficient porphyrin generation in vivo using dendrimer conjugates of 5-ALA for photodynamic therapy. J. Controlled Release 135, 136–143.

    CAS  Google Scholar 

  113. Rodrigues, M. M. A., Simioni, A. R., Primo, F. L., Siqueira-Moura, M. P., Morais, P. C., and Tedesco, A. C. (2009) Preparation, characterization and in vitro cytotoxicity of BSA-based nanospheres containing nanosized magnetic particles and/or photosensitizer. J. Magn. Magn. Mater. 321, 1600–1603.

    CAS  Google Scholar 

Download references

Acknowledgments

This article is partially supported by funding from NIH grants 1R01EB007977, R33CA125297 03S1, and R21/R33CA125297.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raoul Kopelman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lee, YE.K., Kopelman, R. (2011). Polymeric Nanoparticles for Photodynamic Therapy. In: Hurst, S. (eds) Biomedical Nanotechnology. Methods in Molecular Biology, vol 726. Humana Press. https://doi.org/10.1007/978-1-61779-052-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-052-2_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-051-5

  • Online ISBN: 978-1-61779-052-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics