Skip to main content

Genome Sequencing and Assembly

  • Protocol
  • First Online:
Fungal Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 722))

Abstract

Decoding the genome sequence is becoming a fundamental tool for molecular, genetic, and genomic studies. This chapter reviews the history of DNA sequencing and technical principles of different sequencing platforms, and compares the strengths and weaknesses of different techniques for high-throughput genome sequencing applications are compared. It also covers brief descriptions on genome assembly and its validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maxam AM, and Gilbert W. (1977) A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA. 74, 560–4.

    Article  PubMed  CAS  Google Scholar 

  2. Sanger F, and Coulson AR. (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 94, 441–8.

    Article  PubMed  CAS  Google Scholar 

  3. Sanger F, Air GM, Barrell BG, et al. (1977) Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265, 687–95.

    Article  PubMed  CAS  Google Scholar 

  4. Lander ES, Linton LM, Birren B, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.

    Article  PubMed  CAS  Google Scholar 

  5. Venter JC, Adams MD, Myers EW, et al. (2001) The sequence of the human genome. Science 291, 1304–51.

    Article  PubMed  CAS  Google Scholar 

  6. Prober JM, Trainor GL, Dam RJ, et al. (1987) A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science 238, 336–41.

    Article  PubMed  CAS  Google Scholar 

  7. Smith LM, Sanders JZ, Kaiser RJ, et al. (1986) Fluorescence detection in automated DNA sequence analysis. Nature 321, 674–9.

    Article  PubMed  CAS  Google Scholar 

  8. Luckey JA, Drossman H, Kostichka AJ, et al. (1990) High speed DNA sequencing by capillary electrophoresis. Nucleic Acids Res. 18, 4417–21.

    Article  PubMed  CAS  Google Scholar 

  9. Swerdlow H, and Gesteland R. (1990) Capillary gel electrophoresis for rapid, high resolution DNA sequencing. Nucleic Acids Res. 18, 1415–9.

    Article  PubMed  CAS  Google Scholar 

  10. Ewing B, and Green P. (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–94.

    Google Scholar 

  11. Ewing B, Hillier L, Wendl MC, and Green P. (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–85.

    Google Scholar 

  12. Peltola H, Soderlund H, and Ukkonen E. (1984) SEQAID: a DNA sequence assembling program based on a mathematical model. Nucleic Acids Res. 12, 307–21.

    Article  PubMed  CAS  Google Scholar 

  13. Huang X, and Madan A. (1999) CAP3: A DNA sequence assembly program. Genome Res. 9, 868–77.

    Article  PubMed  CAS  Google Scholar 

  14. Green P. PHRAP documentation. http://wwwphraporg 1994.

  15. Sutton G, White O, Adams M, and Kerlavage A. (1995) TIGR assembler: A new tool for assembling large shotgun sequencing projects. Genome Sci Technol. 1, 9–19.

    Article  CAS  Google Scholar 

  16. Kim S, Segre AM. (1999) AMASS: a structured pattern matching approach to shotgun sequence assembly. J. Comput Biol. 6, 163–86.

    Article  PubMed  CAS  Google Scholar 

  17. Myers EW, Sutton GG, Delcher AL, et al. (2000) A whole-genome assembly of Drosophila. Science 287, 2196–204.

    Article  PubMed  CAS  Google Scholar 

  18. Pevzner PA, Tang H, and Waterman MS. (2001) An Eulerian path approach to DNA fragment assembly. Proc. Natl. Acad. Sci. USA. 98, 9748–53.

    Article  PubMed  CAS  Google Scholar 

  19. Dehal P, Satou Y, Campbell RK, et al. (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298, 2157–67.

    Article  PubMed  CAS  Google Scholar 

  20. Mullikin JC, and Ning Z. (2003) The phusion assembler. Genome Res. 13, 81–90.

    Article  PubMed  CAS  Google Scholar 

  21. Huang X, Wang J, Aluru S, Yang SP, and Hillier L. (2003) PCAP: a whole-genome assembly program. Genome Res. 13: 2164–70.

    Article  PubMed  CAS  Google Scholar 

  22. Batzoglou S, Jaffe DB, Stanley K, et al. (2002) ARACHNE: a whole-genome shotgun assembler. Genome Res. 12, 177–89.

    Article  PubMed  CAS  Google Scholar 

  23. Jaffe DB, Butler J, Gnerre S, et al. (2003) Whole-genome sequence assembly for mammalian genomes: Arachne 2. Genome Res. 13, 91–6.

    Article  PubMed  CAS  Google Scholar 

  24. Ronaghi M, Karamohamed S, Pettersson B, Uhlen M, and Nyren P. (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem. 242, 84–9.

    Article  PubMed  CAS  Google Scholar 

  25. Brockman W, Alvarez P, Young S, et al. (2008) Quality scores and SNP detection in ­sequencing-by-synthesis systems. Genome Res. 18, 763–70.

    Article  PubMed  CAS  Google Scholar 

  26. Zerbino DR, and Birney E. (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–9.

    Article  PubMed  CAS  Google Scholar 

  27. Butler J, MacCallum I, Kleber M, et al. (2008) ALLPATHS: de novo assembly of whole-genome shotgun microreads. Genome Res. 18, 810–20.

    Article  PubMed  CAS  Google Scholar 

  28. Harris TD, Buzby PR, Babcock H, et al. (2008) Single-molecule DNA sequencing of a viral genome. Science 320, 106–9.

    Article  PubMed  CAS  Google Scholar 

  29. Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, and Webb WW. (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–6.

    Article  PubMed  CAS  Google Scholar 

  30. Eid J, Fehr A, Gray J, et al. (2009) Real-time DNA sequencing from single polymerase molecules. Science 323, 133–8.

    Article  PubMed  CAS  Google Scholar 

  31. Li J, Stein D, McMullan C, Branton D, Aziz MJ, and Golovchenko JA. (2001) Ion-beam sculpting at nanometre length scales. Nature 412, 166–9.

    Article  PubMed  CAS  Google Scholar 

  32. Zwolak M, Di and Ventra M. (2005) Electronic signature of DNA nucleotides via transverse transport. Nano Lett. 5, 421–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Jun Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Grabherr, M.G., Mauceli, E., Ma, LJ. (2011). Genome Sequencing and Assembly. In: Xu, JR., Bluhm, B. (eds) Fungal Genomics. Methods in Molecular Biology, vol 722. Humana Press. https://doi.org/10.1007/978-1-61779-040-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-040-9_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-039-3

  • Online ISBN: 978-1-61779-040-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics