Skip to main content

Integrated Bioinformatics Analysis for Cancer Target Identification

  • Protocol
  • First Online:
Bioinformatics for Omics Data

Part of the book series: Methods in Molecular Biology ((MIMB,volume 719))

Abstract

The exponential growth of high-throughput Omics data has provided an unprecedented opportunity for new target identification to fuel the dried-up drug discovery pipeline. However, the bioinformatics analysis of large amount and heterogeneous Omics data has posed a great deal of technical challenges for experimentalists who lack statistical skills. Moreover, due to the complexity of human diseases, it is essential to analyze the Omics data in the context of molecular networks to detect meaningful biological targets and understand disease processes. Here, we describe an integrated bioinformatics analysis strategy and provide a running example to identify suitable targets for our in-house Enzyme-Mediated Cancer Imaging and Therapy (EMCIT) technology. In addition, we go through a few key concepts in the process, including corrected false discovery rate (FDR), Gene Ontology (GO), pathway analysis, and tissue specificity. We also describe popular programs and databases which allow the convenient annotation and network analysis of Omics data. We provide a practical guideline for researchers to quickly follow the protocol described and identify those targets that are pertinent to their work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang Y, Adelstein SJ, and Kassis AI. (2009) Target discovery from data mining approaches. Drug Discov Today 14(3–4), 147–54.

    Article  PubMed  Google Scholar 

  2. Chen X, Ji ZL, and Chen YZ. (2002) TTD: Therapeutic Target Database. Nucleic Acids Res 30(1), 412–5.

    Article  PubMed  CAS  Google Scholar 

  3. Zheng C, Han L, Yap CW, Xie B et al. (2006) Progress and problems in the exploration of therapeutic targets. Drug Discov Today 11(9–10), 412–20.

    Article  PubMed  CAS  Google Scholar 

  4. Sams-Dodd F. (2005) Target-based drug discovery: is something wrong? Drug Discov Today 10(2), 139–47.

    Article  PubMed  CAS  Google Scholar 

  5. Butcher SP. (2003) Target discovery and validation in the post-genomic era. Neurochem Res 28(2), 367–71.

    Article  PubMed  CAS  Google Scholar 

  6. Rhodes DR, and Chinnaiyan AM. (2005) Integrative analysis of the cancer transcriptome. Nat Genet 37, 31–7.

    Article  Google Scholar 

  7. Pawitan Y, Michiels S, Koscielny S, Gusnanto A et al. (2005) False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics 21(13), 3017–24.

    Article  PubMed  CAS  Google Scholar 

  8. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R et al. (2007) Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9, 166–80.

    Article  PubMed  CAS  Google Scholar 

  9. Li S, Becich MJ, and Gilbertson J. (2004) Microarray data mining using Gene Ontology. Medinfo 107, 778–82.

    CAS  Google Scholar 

  10. Welsh JB, Sapinoso LM, Kern SG, Brown DA et al. (2003) Large-scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum. Proc Natl Acad Sci USA 100, 3410–15.

    Article  PubMed  CAS  Google Scholar 

  11. Curtis RK, Oresic M, and Vidal-Puig A. (2005) Pathways to the analysis of microarray data. Trends Biotechnol 23(8), 429–35.

    Article  PubMed  CAS  Google Scholar 

  12. Bredel M, Scholtens DM, Harsh GR, Bredel C et al. (2009) A network model of a cooperative genetic landscape in brain tumors. JAMA 302(3), 261–75.

    Article  PubMed  CAS  Google Scholar 

  13. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A et al. (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34(3), 267–73.

    Article  PubMed  CAS  Google Scholar 

  14. Yue QX, Cao ZW, Guan SH, Liu XH et al. (2008) Proteomics characterization of the cytotoxicity mechanism of ganoderic acid D and computer-automated estimation of the possible drug target network. Mol Cell Proteomics 7(5), 949–61.

    Article  PubMed  CAS  Google Scholar 

  15. Liang S, Li Y, Be X, Howes S et al. (2006) Detecting and profiling tissue-selective genes. Physiol Genomics 26(2), 158–62.

    Article  PubMed  CAS  Google Scholar 

  16. Yang Y, Pospisil P, Adelstein SJ, and Kassis AI. (2008) Integrative genomic data mining for discovery of potential blood-borne biomarkers for early diagnosis of cancer. PLoS ONE 3(11), e3661.

    Article  PubMed  Google Scholar 

  17. Chen K, Aowad AF, Adelstein SJ, and Kassis AI. (2007) Molecular-docking-guided design, synthesis, and biologic evaluation of radioiodinated quinazolinone prodrugs. J Med Chem 50(4), 663–73.

    Article  PubMed  CAS  Google Scholar 

  18. Pospisil P, Wang K, Al Aowad AF, Iyer LK et al. (2007) Computational modeling and experimental evaluation of a novel prodrug for targeting the extracellular space of prostate tumors. Cancer Res 67, 2197–205.

    Article  PubMed  CAS  Google Scholar 

  19. Kassis AI, Korideck H, Wang K, Pospisil P et al. (2008) Novel prodrugs for targeting diagnostic and therapeutic radionuclides to solid tumors. Molecules 13(2), 391–404.

    Article  PubMed  CAS  Google Scholar 

  20. Pospisil P, Iyer LK, Adelstein SJ, and Kassis AI. (2006) A combined approach to data mining of textual and structured data to identify cancer-related targets. BMC Bioinformatics 7, 354.

    Article  PubMed  Google Scholar 

  21. Griffith OL, Melck A, Jones SJ, and Wiseman SM. (2006) Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol 24(31), 5043–51.

    Article  PubMed  CAS  Google Scholar 

  22. Harris MA, Clark J, Ireland A, Lomax J et al. (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32, D258–61.

    Article  PubMed  CAS  Google Scholar 

  23. Doms A, and Schroeder M. (2005) GoPubMed: exploring PubMed with the Gene Ontology. Nucleic Acids Res 33, 783–6.

    Article  Google Scholar 

  24. Chang JT, Schütze H, and Altman RB. (2004) GAPSCORE: finding gene and protein names one word at a time. Bioinformatics 20(2), 216–25.

    Article  PubMed  CAS  Google Scholar 

  25. Schülke N, Varlamova OA, Donovan GP, Ma D et al. (2003) The homodimer of prostate-specific membrane antigen is a functional target for cancer therapy. Proc Natl Acad Sci USA 100(22), 12590–5.

    Article  PubMed  Google Scholar 

  26. Banerjee SR, Foss CA, Castanares M, Mease RC et al. (2008) Synthesis and evaluation of technetium-99m- and rhenium-labeled inhibitors of the prostate-specific membrane ­antigen (PSMA). J Med Chem 51(15), 4504–17.

    Article  PubMed  CAS  Google Scholar 

  27. Humblet V, Lapidus R, Williams LR, Tsukamoto T et al. (2005) High-affinity near-infrared fluorescent small-molecule contrast agents for in vivo imaging of prostate-specific membrane antigen. Mol Imaging 4(4), 448–62.

    PubMed  Google Scholar 

  28. Poola I, DeWitty RL, Marshalleck JJ, Bhatnagar R et al. (2005) Identification of MMP-1 as a putative breast cancer predictive marker by global gene expression analysis. Nat Med 11, 481–83.

    Article  PubMed  CAS  Google Scholar 

  29. Kuhlmann KFD, van Till JWO, Boermeester MA, de Reuver PR et al. (2007) Evaluation of matrix metalloproteinase 7 in plasma and pancreatic juice as a biomarker for pancreatic cancer. Cancer Epidemiol Biomarkers Prev 16, 886–91.

    Article  PubMed  CAS  Google Scholar 

  30. Vihinen P, and Kähäri V-M. (2002) Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int J Cancer 99, 157–66.

    Article  PubMed  CAS  Google Scholar 

  31. Abiatari I, Kleeff J, Li J, Felix K et al. (2006) Hsulf-1 regulates growth and invasion of pancreatic cancer cells. J Clin Pathol 59, 1052–58.

    Article  PubMed  CAS  Google Scholar 

  32. Duffy MJ. (2004) The urokinase plasminogen activator system: role in malignancy. Curr Pharm Des 10(1), 39–49.

    Article  PubMed  CAS  Google Scholar 

  33. Law B, Curino A, Bugge TH, Weissleder R et al. (2004) Design, synthesis, and characterization of urokinase plasminogen-activator-sensitive near-infrared reporter. Chem Biol 11(1), 99–106.

    PubMed  CAS  Google Scholar 

  34. Li ZB, Niu G, Wang H, He L et al. (2008) Imaging of urokinase-type plasminogen activator receptor expression using a 64Cu-labeled linear peptide antagonist by microPET. Clin Cancer Res 14(15), 4758–66.

    Article  PubMed  CAS  Google Scholar 

  35. Huang da W, Sherman BT, and Lempicki RA. (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1), 44–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Cancer Institute grant, Detection of Prostate Cancer Genomic Signatures in Blood (to AIK). Work in the Y. Yang laboratory was supported by Start-up Fund (grant: 3016-893318) at Dalian University of Technology and National Science Foundation in China, Medical Division Oncology Department (grant: 81000975).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin I. Kassis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yang, Y., Adelstein, S.J., Kassis, A.I. (2011). Integrated Bioinformatics Analysis for Cancer Target Identification. In: Mayer, B. (eds) Bioinformatics for Omics Data. Methods in Molecular Biology, vol 719. Humana Press. https://doi.org/10.1007/978-1-61779-027-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-027-0_25

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-026-3

  • Online ISBN: 978-1-61779-027-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics