Skip to main content

Design and Testing of Regulatory Cassettes for Optimal Activity in Skeletal and Cardiac Muscles

  • Protocol
  • First Online:
Muscle Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 709))

Abstract

Gene therapy for muscular dystrophies requires efficient gene delivery to the striated musculature and specific, high-level expression of the therapeutic gene in a physiologically diverse array of muscles. This can be achieved by the use of recombinant adeno-associated virus vectors in conjunction with muscle-specific regulatory cassettes. We have constructed several generations of regulatory cassettes based on the enhancer and promoter of the muscle creatine kinase gene, some of which include heterologous enhancers and individual elements from other muscle genes. Since the relative importance of many control elements varies among different anatomical muscles, we are aiming to tailor these cassettes for high-level expression in cardiac muscle, and in fast and slow skeletal muscles. With the achievement of efficient intravascular gene delivery to isolated limbs, selected muscle groups, and heart in large animal models, the design of cassettes optimized for activity in different muscle types is now a practical goal. In this protocol, we outline the key steps involved in the design of regulatory cassettes for optimal activity in skeletal and cardiac muscle, and testing in mature muscle fiber cultures. The basic principles described here can also be applied to engineering tissue-specific regulatory cassettes for other cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salva, M. Z., Himeda, C. L., Tai, P. W., Nishiuchi, E., Gregorevic, P., Allen, J. M., Finn, E. E., Nguyen, Q. G., Blankinship, M. J., Meuse, L., Chamberlain, J. S., and Hauschka, S. D. (2007) Design of tissue-specific regulatory cassettes for high-level rAAV-mediated expression in skeletal and cardiac muscle. Mol Ther 15, 320–329.

    Article  PubMed  CAS  Google Scholar 

  2. Gregorevic, P., Blankinship, M. J., Allen, J. M., Crawford, R. W., Meuse, L., Miller, D. G., Russell, D. W., and Chamberlain, J. S. (2004) Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 10, 828–834.

    Article  PubMed  CAS  Google Scholar 

  3. Donoviel, D. B., Shield, M. A., Buskin, J. N., Haugen, H. S., Clegg, C. H., and Hauschka, S. D. (1996) Analysis of muscle creatine kinase gene regulatory elements in skeletal and cardiac muscles of transgenic mice. Mol Cell Biol 16, 1649–1658.

    PubMed  CAS  Google Scholar 

  4. Shield, M. A., Haugen, H. S., Clegg, C. H., and Hauschka, S. D. (1996) E-box sites and a proximal regulatory region of the muscle creatine kinase gene differentially regulate expression in diverse skeletal muscles and cardiac muscle of transgenic mice. Mol Cell Biol 16, 5058–5068.

    PubMed  CAS  Google Scholar 

  5. Hagstrom, J. N., Couto, L. B., Scallan, C., Burton, M., McCleland, M. L., Fields, P. A., Arruda, V. R., Herzog, R. W., and High, K. A. (2000) Improved muscle-derived expression of human coagulation factor IX from a skeletal actin/CMV hybrid enhancer/promoter. Blood 95, 2536–2542.

    PubMed  CAS  Google Scholar 

  6. Jerkovic, R., Vitadello, M., Kelly, R., Buckingham, M., and Schiaffino, S. (1997) Fibre type-specific and nerve-dependent regulation of myosin light chain 1 slow promoter in regenerating muscle. J Muscle Res Cell Motil 18, 369–373.

    Article  PubMed  CAS  Google Scholar 

  7. Li, X., Eastman, E. M., Schwartz, R. J., and Draghia-Akli, R. (1999) Synthetic muscle promoters: activities exceeding naturally occurring regulatory sequences. Nat Biotechnol 17, 241–245.

    Article  PubMed  CAS  Google Scholar 

  8. Kelly, R. G., and Buckingham, M. E. (2000) Modular regulation of the MLC1F/3F gene and striated muscle diversity. Microsc Res Tech 50, 510–521.

    Article  PubMed  CAS  Google Scholar 

  9. Skarli, M., Kiri, A., Vrbova, G., Lee, C. A., and Goldspink, G. (1998) Myosin regulatory elements as vectors for gene transfer by intramuscular injection. Gene Ther 5, 514–520.

    Article  PubMed  CAS  Google Scholar 

  10. Arruda, V. R., Stedman, H. H., Nichols, T. C., Haskins, M. E., Nicholson, M., Herzog, R. W., Couto, L. B., and High, K. A. (2005) Regional intravascular delivery of AAV-2-F.IX to skeletal muscle achieves long-term correction of hemophilia B in a large animal model. Blood 105, 3458–3464.

    Article  PubMed  CAS  Google Scholar 

  11. Su, L. T., Gopal, K., Wang, Z., Yin, X., Nelson, A., Kozyak, B. W., Burkman, J. M., Mitchell, M. A., Low, D. W., Bridges, C. R., and Stedman, H. H. (2005) Uniform scale-independent gene transfer to striated muscle after transvenular extravasation of vector. Circulation 112, 1780–1788.

    Article  PubMed  CAS  Google Scholar 

  12. Bridges, C. R., Gopal, K., Holt, D. E., Yarnall, C., Cole, S., Anderson, R. B., Yin, X., Nelson, A., Kozyak, B. W., Wang, Z., Lesniewski, J., Su, L. T., Thesier, D. M., Sundar, H., and Stedman, H. H. (2005) Efficient myocyte gene delivery with complete cardiac surgical isolation in situ. J Thorac Cardiovasc Surg 130, 1364.

    Article  PubMed  Google Scholar 

  13. Amacher, S. L., Buskin, J. N., and Hauschka, S. D. (1993) Multiple regulatory elements contribute differentially to muscle creatine kinase enhancer activity in skeletal and cardiac muscle. Mol Cell Biol 13, 2753–2764.

    PubMed  CAS  Google Scholar 

  14. Clegg, C. H., Linkhart, T. A., Olwin, B. B., and Hauschka, S. D. (1987) Growth factor control of skeletal muscle differentiation: commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factor. J Cell Biol 105, 949–956.

    Article  PubMed  CAS  Google Scholar 

  15. Neville, C., Rosenthal, N., McGrew, M., Bogdanova, N., and Hauschka, S. (1997) Skeletal muscle cultures. Methods Cell Biol 52, 85–116.

    Article  PubMed  CAS  Google Scholar 

  16. Nguyen, Q. G., Buskin, J. N., Himeda, C. L., Fabre-Suver, C., and Hauschka, S. D. (2003) Transgenic and tissue culture analyses of the muscle creatine kinase enhancer Trex control element in skeletal and cardiac muscle indicate differences in gene expression between muscle types. Transgenic Res 12, 337–349.

    Article  PubMed  CAS  Google Scholar 

  17. Bischoff, R. (1989) Analysis of muscle regeneration using single myofibers in culture. Med Sci Sports Exerc 21, S164–S172.

    PubMed  CAS  Google Scholar 

  18. Bischoff, R. (1990) Interaction between satellite cells and skeletal muscle fibers. Development 109, 943–952.

    PubMed  CAS  Google Scholar 

  19. Bischoff, R. (1990) Cell cycle commitment of rat muscle satellite cells. J Cell Biol 111, 201–207.

    Article  PubMed  CAS  Google Scholar 

  20. Konigsberg, U. R., Lipton, B. H., and Konigsberg, I. R. (1975) The regenerative response of single mature muscle fibers isolated in vitro. Dev Biol 45, 260–275.

    Article  PubMed  CAS  Google Scholar 

  21. Shefer, G., and Yablonka-Reuveni, Z. (2005) Isolation and culture of skeletal muscle myofibers as a means to analyze satellite cells. Methods Mol Biol 290, 281–304.

    PubMed  Google Scholar 

  22. Sternberg, E. A., Spizz, G., Perry, W. M., Vizard, D., Weil, T., and Olson, E. N. (1988) Identification of upstream and intragenic regulatory elements that confer cell-type-restricted and differentiation-specific expression on the muscle creatine kinase gene. Mol Cell Biol 8, 2896–2909.

    PubMed  CAS  Google Scholar 

  23. Johnson, J. E., Wold, B. J., and Hauschka, S. D. (1989) Muscle creatine kinase sequence elements regulating skeletal and cardiac muscle expression in transgenic mice. Mol Cell Biol 9, 3393–3399.

    PubMed  CAS  Google Scholar 

  24. Jaynes, J. B., Johnson, J. E., Buskin, J. N., Gartside, C. L., and Hauschka, S. D. (1988) The muscle creatine kinase gene is regulated by multiple upstream elements, including a muscle-specific enhancer. Mol Cell Biol 8, 62–70.

    PubMed  CAS  Google Scholar 

  25. Hauser, M. A., Robinson, A., Hartigan-O’Connor, D., Williams-Gregory, D. A., Buskin, J. N., Apone, S., Kirk, C. J., Hardy, S., Hauschka, S. D., and Chamberlain, J. S. (2000) Analysis of muscle creatine kinase regulatory elements in recombinant adenoviral vectors. Mol Ther 2, 16–25.

    Article  PubMed  CAS  Google Scholar 

  26. Himeda, C. L. (2003) Identification and Characterization of the Trex-Binding Factor in the Muscle Creatine Kinase Enhancer. Univer-sity of Washington, Seattle, Washington.

    Google Scholar 

  27. Himeda, C. L., Ranish, J. A., Angello, J. C., Maire, P., Aebersold, R., and Hauschka, S. D. (2004) Quantitative proteomic identification of six4 as the trex-binding factor in the muscle creatine kinase enhancer. Mol Cell Biol 24, 2132–2143.

    Article  PubMed  CAS  Google Scholar 

  28. Himeda, C. L., Ranish, J. A., and Hauschka, S. D. (2008) Quantitative proteomic identification of MAZ as a transcriptional regulator of muscle-specific genes in skeletal and cardiac myocytes. Mol Cell Biol 28, 6521–6535.

    Article  PubMed  CAS  Google Scholar 

  29. Himeda, C. L., Ranish, J. A., Pearson, R. C., Crossley, M., and Hauschka, S. D. (2010) KLF3 regulates muscle-specific gene expression and synergizes with serum response factor on KLF binding sites. Mol Cell Biol 30, 3430–3443.

    Google Scholar 

  30. Donoghue, M., Ernst, H., Wentworth, B., Nadal-Ginard, B., and Rosenthal, N. (1988) A muscle-specific enhancer is located at the 3′ end of the myosin light-chain 1/3 gene locus. Genes Dev 2, 1779–1790.

    Article  PubMed  CAS  Google Scholar 

  31. Emami, K. H., Jain, A., and Smale, S. T. (1997) Mechanism of synergy between TATA and initiator: synergistic binding of TFIID following a putative TFIIA-induced isomerization. Genes Dev 11, 3007–3019.

    Article  PubMed  CAS  Google Scholar 

  32. Morin, S., Paradis, P., Aries, A., and Nemer, M. (2001) Serum response factor-GATA ternary complex required for nuclear signaling by a G-protein-coupled receptor. Mol Cell Biol 21, 1036–1044.

    Article  PubMed  CAS  Google Scholar 

  33. Apone, S., and Hauschka, S. D. (1995) Muscle gene E-box control elements. Evidence for quantitatively different transcriptional activities and the binding of distinct regulatory factors. J Biol Chem 270, 21420–21427.

    Article  PubMed  CAS  Google Scholar 

  34. Larkin, S. B., Farrance, I. K., and Ordahl, C. P. (1996) Flanking sequences modulate the cell specificity of M-CAT elements. Mol Cell Biol 16, 3742–3755.

    PubMed  CAS  Google Scholar 

  35. Niu, Z., Li, A., Zhang, S. X., and Schwartz, R. J. (2007) Serum response factor micromanaging cardiogenesis. Curr Opin Cell Biol 19, 618–627.

    Article  PubMed  CAS  Google Scholar 

  36. Buskin, J. N., and Hauschka, S. D. (1989) Identification of a myocyte nuclear factor that binds to the muscle-specific enhancer of the mouse muscle creatine kinase gene. Mol Cell Biol 9, 2627–2640.

    PubMed  CAS  Google Scholar 

  37. Blackwell, T. K., and Weintraub, H. (1990) Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science 250, 1104–1110.

    Article  PubMed  CAS  Google Scholar 

  38. Wright, W. E., Binder, M., and Funk, W. (1991) Cyclic amplification and selection of targets (CASTing) for the myogenin consensus binding site. Mol Cell Biol 11, 4104–4110.

    PubMed  CAS  Google Scholar 

  39. Merika, M., and Orkin, S. H. (1993) DNA-binding specificity of GATA family transcription factors. Mol Cell Biol 13, 3999–4010.

    PubMed  CAS  Google Scholar 

  40. Karasseva, N., Tsika, G., Ji, J., Zhang, A., Mao, X., and Tsika, R. (2003) Transcription enhancer factor 1 binds multiple muscle MEF2 and A/T-rich elements during fast-to-slow skeletal muscle fiber type transitions. Mol Cell Biol 23, 5143–5164.

    Article  PubMed  CAS  Google Scholar 

  41. Huang, J., Blackwell, T. K., Kedes, L., and Weintraub, H. (1996) Differences between MyoD DNA binding and activation site requirements revealed by functional random sequence selection. Mol Cell Biol 16, 3893–3900.

    PubMed  CAS  Google Scholar 

  42. Weintraub, H., Davis, R., Lockshon, D., and Lassar, A. (1990) MyoD binds cooperatively to two sites in a target enhancer sequence: occupancy of two sites is required for activation. Proc Natl Acad Sci U S A 87, 5623–5627.

    Article  PubMed  CAS  Google Scholar 

  43. Rosenblatt, J. D., Lunt, A. I., Parry, D. J., and Partridge, T. A. (1995) Culturing satellite cells from living single muscle fiber explants. In Vitro Cell Dev Biol Anim 31, 773–779.

    Article  PubMed  CAS  Google Scholar 

  44. Favre, D., Cherel, Y., Provost, N., Blouin, V., Ferry, N., Moullier, P., and Salvetti, A. (2000) Hyaluronidase enhances recombinant adeno-associated virus (rAAV)-mediated gene transfer in the rat skeletal muscle. Gene Ther 7, 1417–1420.

    Article  PubMed  CAS  Google Scholar 

  45. Wozniak, A. C., and Anderson, J. E. (2005) Single-fiber isolation and maintenance of satellite cell quiescence. Biochem Cell Biol 83, 674–676.

    Article  PubMed  CAS  Google Scholar 

  46. Lee, T. C., Chow, K. L., Fang, P., and Schwartz, R. J. (1991) Activation of skeletal alpha-actin gene transcription: the cooperative formation of serum response factor-binding complexes over positive cis-acting promoter serum response elements displaces a negative-acting nuclear factor enriched in replicating myoblasts and nonmyogenic cells. Mol Cell Biol 11, 5090–5100.

    PubMed  CAS  Google Scholar 

  47. Chen, C. Y., and Schwartz, R. J. (1996) Recruitment of the tinman homolog Nkx-2.5 by serum response factor activates cardiac alpha-actin gene transcription. Mol Cell Biol 16, 6372–6384.

    PubMed  CAS  Google Scholar 

  48. Groisman, R., Masutani, H., Leibovitch, M. P., Robin, P., Soudant, I., Trouche, D., and Harel-Bellan, A. (1996) Physical interaction between the mitogen-responsive serum response factor and myogenic basic-helix-loop-helix proteins. J Biol Chem 271, 5258–5264.

    Article  PubMed  CAS  Google Scholar 

  49. Gupta, M., Kogut, P., Davis, F. J., Belaguli, N. S., Schwartz, R. J., and Gupta, M. P. (2001) Physical interaction between the MADS box of serum response factor and the TEA/ATTS DNA-binding domain of transcription enhancer factor-1. J Biol Chem 276, 10413–10422.

    Article  PubMed  CAS  Google Scholar 

  50. Natesan, S., and Gilman, M. (1995) YY1 facilitates the association of serum response factor with the c-fos serum response element. Mol Cell Biol 15, 5975–5982.

    PubMed  CAS  Google Scholar 

  51. Durocher, D., and Nemer, M. (1998) Combinatorial interactions regulating cardiac transcription. Dev Genet 22, 250–262.

    Article  PubMed  CAS  Google Scholar 

  52. Lee, Y., Shioi, T., Kasahara, H., Jobe, S. M., Wiese, R. J., Markham, B. E., and Izumo, S. (1998) The cardiac tissue-restricted homeobox protein Csx/Nkx2.5 physically associates with the zinc finger protein GATA4 and cooperatively activates atrial natriuretic factor gene expression. Mol Cell Biol 18, 3120–3129.

    PubMed  CAS  Google Scholar 

  53. Sepulveda, J. L., Belaguli, N., Nigam, V., Chen, C. Y., Nemer, M., and Schwartz, R. J. (1998) GATA-4 and Nkx-2.5 coactivate Nkx-2 DNA binding targets: role for regulating early cardiac gene expression. Mol Cell Biol 18, 3405–3415.

    PubMed  CAS  Google Scholar 

  54. Morin, S., Charron, F., Robitaille, L., and Nemer, M. (2000) GATA-dependent recruitment of MEF2 proteins to target promoters. EMBO J 19, 2046–2055.

    Article  PubMed  CAS  Google Scholar 

  55. Iwahori, A., Fraidenraich, D., and Basilico, C. (2004) A conserved enhancer element that drives FGF4 gene expression in the embryonic myotomes is synergistically activated by GATA and bHLH proteins. Dev Biol 270, 525–537.

    Article  PubMed  CAS  Google Scholar 

  56. Dai, Y. S., Cserjesi, P., Markham, B. E., and Molkentin, J. D. (2002) The transcription factors GATA4 and dHAND physically interact to synergistically activate cardiac gene expression through a p300-dependent mechanism. J Biol Chem 277, 24390–24398.

    Article  PubMed  CAS  Google Scholar 

  57. Garg, V., Kathiriya, I. S., Barnes, R., Schluterman, M. K., King, I. N., Butler, C. A., Rothrock, C. R., Eapen, R. S., Hirayama-Yamada, K., Joo, K., Matsuoka, R., Cohen, J. C., and Srivastava, D. (2003) GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424, 443–447.

    Article  PubMed  CAS  Google Scholar 

  58. Chen, Y., and Cao, X. (2009) NFAT directly regulates Nkx2-5 transcription during cardiac cell differentiation. Biol Cell 101, 335–349.

    Article  PubMed  CAS  Google Scholar 

  59. Bhalla, S. S., Robitaille, L., and Nemer, M. (2001) Cooperative activation by GATA-4 and YY1 of the cardiac B-type natriuretic peptide promoter. J Biol Chem 276, 11439–11445.

    Article  PubMed  CAS  Google Scholar 

  60. Stennard, F. A., Costa, M. W., Elliott, D. A., Rankin, S., Haast, S. J., Lai, D., McDonald, L. P., Niederreither, K., Dolle, P., Bruneau, B. G., Zorn, A. M., and Harvey, R. P. (2003) Cardiac T-box factor Tbx20 directly interacts with Nkx2-5, GATA4, and GATA5 in regulation of gene expression in the developing heart. Dev Biol 262, 206–224.

    Article  PubMed  CAS  Google Scholar 

  61. Molkentin, J. D., Black, B. L., Martin, J. F., and Olson, E. N. (1995) Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83, 1125–1136.

    Article  PubMed  CAS  Google Scholar 

  62. Morin, S., Pozzulo, G., Robitaille, L., Cross, J., and Nemer, M. (2005) MEF2-dependent recruitment of the HAND1 transcription factor results in synergistic activation of target promoters. J Biol Chem 280, 32272–32278.

    Article  PubMed  CAS  Google Scholar 

  63. Maeda, T., Gupta, M. P., and Stewart, A. F. (2002) TEF-1 and MEF2 transcription factors interact to regulate muscle-specific promoters. Biochem Biophys Res Commun 294, 791–797.

    Article  PubMed  CAS  Google Scholar 

  64. Armand, A. S., Bourajjaj, M., Martinez-Martinez, S., el Azzouzi, H., da Costa Martins, P. A., Hatzis, P., Seidler, T., Redondo, J. M., and De Windt, L. J. (2008) Cooperative synergy between NFAT and MyoD regulates myogenin expression and myogenesis. J Biol Chem 283, 29004–29010.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Hauschka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Himeda, C.L., Chen, X., Hauschka, S.D. (2011). Design and Testing of Regulatory Cassettes for Optimal Activity in Skeletal and Cardiac Muscles. In: Duan, D. (eds) Muscle Gene Therapy. Methods in Molecular Biology, vol 709. Humana Press. https://doi.org/10.1007/978-1-61737-982-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-982-6_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-981-9

  • Online ISBN: 978-1-61737-982-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics