Skip to main content

Viral Transduction of Adipose-Derived Stem Cells

  • Protocol
  • First Online:
Adipose-Derived Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 702))

Abstract

Increasing numbers of regenerative approaches now involve use of adult stem cells, like the bone marrow MSC or the adipose-derived ASC. With their ease of in vitro manipulation and successful tissue integration in vivo, the ASC makes an attractive candidate for gene delivery in vivo using viral-based gene therapy strategies. As such, this chapter describes methods for the transduction of human ASCs with two popular types of recombinant viruses: adenovirus and lentivirus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bett, A. J., Haddara, W., Prevec, L., and Graham, F. L. (1994) An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc Natl Acad Sci U S A 91, 8802–6.

    Article  PubMed  CAS  Google Scholar 

  2. Liu, H., Honmou, O., Harada, K., Nakamura, K., Houkin, K., Hamada, H., and Kocsis, J. D. (2006) Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain 129, 2734–45.

    Article  PubMed  CAS  Google Scholar 

  3. Wang, Y., Feng, C., Xue, J., Sun, A., Li, J., and Wu, J. (2009) Adenovirus-mediated hypoxia-inducible factor 1alpha double-mutant promotes differentiation of bone marrow stem cells to cardiomyocytes. J Physiol Sci 59, 413–420.

    Google Scholar 

  4. Wang, Y., Sun, A., Xue, J., Feng, C., Li, J., and Wu, J. (2009) Bone marrow derived stromal cells modified by adenovirus-mediated HIF-1alpha double mutant protect cardiac myocytes against CoCl2-induced apoptosis. Toxicol In Vitro 23, 1069–75.

    Article  PubMed  CAS  Google Scholar 

  5. Lin, H., Shabbir, A., Molnar, M., Yang, J., Marion, S., Canty, J. M., Jr., and Lee, T. (2008) Adenoviral expression of vascular endothelial growth factor splice variants differentially regulate bone marrow-derived mesenchymal stem cells. J Cell Physiol 216, 458–68.

    Article  PubMed  CAS  Google Scholar 

  6. Gao, F., He, T., Wang, H., Yu, S., Yi, D., Liu, W., and Cai, Z. (2007) A promising strategy for the treatment of ischemic heart disease: Mesenchymal stem cell-mediated vascular endothelial growth factor gene transfer in rats. Can J Cardiol 23, 891–8.

    Article  PubMed  Google Scholar 

  7. Hong, X., Miller, C., Savant-Bhonsale, S., and Kalkanis, S. N. (2009) Antitumor treatment using interleukin-12-secreting marrow stromal cells in an invasive glioma model. Neurosurgery 64, 1139–46; discussion 46–7.

    Google Scholar 

  8. Kanehira, M., Xin, H., Hoshino, K., Maemondo, M., Mizuguchi, H., Hayakawa, T., Matsumoto, K., Nakamura, T., Nukiwa, T., and Saijo, Y. (2007) Targeted delivery of NK4 to multiple lung tumors by bone marrow-derived mesenchymal stem cells. Cancer Gene Ther 14, 894–903.

    Article  PubMed  CAS  Google Scholar 

  9. Morizono, K., De Ugarte, D. A., Zhu, M., Zuk, P. A., Elbarbary, A., Ashjian, P. H., Benhaim, P., Chen, I. S., Hedrick, M. H. (2003) Multilineage cells from adipose tissue as gene delivery vehicles. Hum Gene Ther 14, 59–66.

    Article  PubMed  CAS  Google Scholar 

  10. Dragoo, J. L., Choi, J. Y., Lieberman, J. R., Huang, J., Zuk, P. A., Zhang, J., Hedrick, M. H., and Benhaim, P. (2003) Bone induction by BMP-2 transduced stem cells derived from human fat. J Orthop Res 21, 622–9.

    Article  PubMed  CAS  Google Scholar 

  11. Dragoo, J. L., Lieberman, J. R., Lee, R. S., Deugarte, D. A., Lee, Y., Zuk, P. A., Hedrick, M. H., and Benhaim, P. (2005) Tissue-engineered bone from BMP-2-transduced stem cells derived from human fat. Plast Reconstr Surg 115, 1665–73.

    Article  PubMed  CAS  Google Scholar 

  12. Peterson, B., Zhang, J., Iglesias, R., Kabo, M., Hedrick, M., Benhaim, P., and Lieberman, J. R. (2005) Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng 11, 120–9.

    Article  PubMed  CAS  Google Scholar 

  13. Lin, L., Shen, Q., Wei, X., Hou, Y., Xue, T., Fu, X., Duan, X., and Yu, C. (2009) Comparison of osteogenic potentials of BMP4 transduced stem cells from autologous bone marrow and fat tissue in a rabbit model of calvarial defects. Calcif Tissue Int 85, 55–65.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang, X., Yang, M., Lin, L., Chen, P., Ma, K. T., Zhou, C. Y., and Ao, Y. F. (2006) Runx2 overexpression enhances osteoblastic differentiation and mineralization in adipose – derived stem cells in vitro and in vivo. Calcif Tissue Int 79, 169–78.

    Article  PubMed  CAS  Google Scholar 

  15. Yang, M., Ma, Q. J., Dang, G. T., Ma, K., Chen, P., and Zhou, C. Y. (2005) In vitro and in vivo induction of bone formation based on ex vivo gene therapy using rat adipose-derived adult stem cells expressing BMP-7. Cytotherapy 7, 273–81.

    Article  PubMed  CAS  Google Scholar 

  16. Feng, G., Wan, Y., Balian, G., Laurencin, C. T., and Li, X. (2008) Adenovirus-mediated expression of growth and differentiation factor-5 promotes chondrogenesis of adipose stem cells. Growth Factors 26, 132–42.

    Article  PubMed  CAS  Google Scholar 

  17. Jin, X., Sun, Y., Zhang, K., Wang, J., Shi, T., Ju, X., and Lou, S. (2007) Ectopic neocartilage formation from predifferentiated human adipose derived stem cells induced by adenoviral-mediated transfer of hTGF beta2. Biomaterials 28, 2994–3003.

    Article  PubMed  CAS  Google Scholar 

  18. Lamfers, M., Idema, S., van Milligen, F., Schouten, T., van der Valk, P., Vandertop, P., Dirven, C., and Noske, D. (2009) Homing properties of adipose-derived stem cells to intracerebral glioma and the effects of adenovirus infection. Cancer Lett 274, 78–87.

    Article  PubMed  CAS  Google Scholar 

  19. Kang, S. K., Lee, D. H., Bae, Y. C., Kim, H. K., Baik, S. Y., and Jung, J. S. (2003) Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol 183, 355–66.

    Article  PubMed  CAS  Google Scholar 

  20. Rogers, P. M., Mashtalir, N., Rathod, M. A., Dubuisson, O., Wang, Z., Dasuri, K., Babin, S., Gupta, A., Markward, N., Cefalu, W. T., and Dhurandhar, N. V. (2008) Metabolically favorable remodeling of human adipose tissue by human adenovirus type 36. Diabetes 57, 2321–31.

    Article  PubMed  CAS  Google Scholar 

  21. Pasarica, M., Mashtalir, N., McAllister, E. J., Kilroy, G. E., Koska, J., Permana, P., de Courten, B., Yu, M., Ravussin, E., Gimble, J. M., and Dhurandhar, N. V. (2008) Adipogenic human adenovirus Ad-36 induces commitment, differentiation, and lipid accumulation in human adipose-derived stem cells. Stem Cells 26, 969–78.

    Article  PubMed  CAS  Google Scholar 

  22. Buchschacher, G. L., Jr., and Wong-Staal, F. (2000) Development of lentiviral vectors for gene therapy for human diseases. Blood 95, 2499–504.

    PubMed  CAS  Google Scholar 

  23. Dull, T., Zufferey, R., Kelly, M., Mandel, R. J., Nguyen, M., Trono, D., and Naldini, L. (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72, 8463–71.

    PubMed  CAS  Google Scholar 

  24. Goncalves, M. A., de Vries, A. A., Holkers, M., van de Watering, M. J., van der Velde, I., van Nierop, G. P., Valerio, D., and Knaan-Shanzer, S. (2006) Human mesenchymal stem cells ectopically expressing full-length dystrophin can complement Duchenne muscular dystrophy myotubes by cell fusion. Hum Mol Genet 15, 213–21.

    Article  PubMed  CAS  Google Scholar 

  25. Goudenege, S., Pisani, D. F., Wdziekonski, B., Di Santo, J. P., Bagnis, C., Dani, C., and Dechesne, C. A. (2009) Enhancement of myogenic and muscle repair capacities of human adipose-derived stem cells with forced expression of MyoD. Mol Ther 17, 1064–72.

    Article  PubMed  CAS  Google Scholar 

  26. Zhu, X. Y., Zhang, X. Z., Xu, L., Zhong, X. Y., Ding, Q., and Chen, Y. X. (2009) Transplantation of adipose-derived stem cells overexpressing hHGF into cardiac tissue. Biochem Biophys Res Commun 379, 1084–90.

    Article  PubMed  CAS  Google Scholar 

  27. Xu, J., Qu, J., Cao, L., Sai, Y., Chen, C., He, L., and Yu, L. (2008) Mesenchymal stem cell-based angiopoietin-1 gene therapy for acute lung injury induced by lipopolysaccharide in mice. J Pathol 214, 472–81.

    Article  PubMed  CAS  Google Scholar 

  28. Rabin, N., Kyriakou, C., Coulton, L., Gallagher, O. M., Buckle, C., Benjamin, R., Singh, N., Glassford, J., Otsuki, T., Nathwani, A. C., Croucher, P. I., and Yong, K. L. (2007) A new xenograft model of myeloma bone disease demonstrating the efficacy of human mesenchymal stem cells expressing osteoprotegerin by lentiviral gene transfer. Leukemia 21, 2181–91.

    Article  PubMed  CAS  Google Scholar 

  29. Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J., and Conklin, D. S. (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16, 948–58.

    Article  PubMed  CAS  Google Scholar 

  30. Yu, J. Y., DeRuiter, S. L., and Turner, D. L. (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A 99, 6047–52.

    Article  PubMed  CAS  Google Scholar 

  31. Lee, H. S., Cho, H. H., Kim, H. K., Bae, Y. C., Baik, H. S., and Jung, J. S. (2007) Tbx3, a transcriptional factor, involves in proliferation and osteogenic differentiation of human adipose stromal cells. Mol Cell Biochem 296, 129–36.

    Article  PubMed  CAS  Google Scholar 

  32. Graham, F. L., Smiley, J., Russell, W. C., and Nairn, R. (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36, 59–74.

    Article  PubMed  CAS  Google Scholar 

  33. Harrison, T., Graham, F., and Williams, J. (1977) Host-range mutants of adenovirus type 5 defective for growth in HeLa cells. Virology 77, 319–29.

    Article  PubMed  CAS  Google Scholar 

  34. Tollefson, A. E., Kuppuswamy, M., Shashkova, E. V., Doronin, K., and Wold, W. S. (2007) Preparation and titration of CsCl-banded adenovirus stocks. Methods Mol Med 130, 223–35.

    PubMed  CAS  Google Scholar 

  35. Naldini, L., Blomer, U., Gage, F. H., Trono, D., and Verma, I. M. (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci U S A 93, 11382–8.

    Article  PubMed  CAS  Google Scholar 

  36. Davis, H. E., Rosinski, M., Morgan, J. R., and Yarmush, M. L. (2004) Charged polymers modulate retrovirus transduction via membrane charge neutralization and virus aggregation. Biophys J 86, 1234–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zuk, P.A. (2011). Viral Transduction of Adipose-Derived Stem Cells. In: Gimble, J., Bunnell, B. (eds) Adipose-Derived Stem Cells. Methods in Molecular Biology, vol 702. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61737-960-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-960-4_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-959-8

  • Online ISBN: 978-1-61737-960-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics