Skip to main content

Breaking the Dimensionality Barrier

  • Protocol
  • First Online:
Flow Cytometry Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 699))

Abstract

Recent advances in biotechnology have resulted in cytometers capable of performing numerous correlated measurements of cells, often exceeding ten. In the near future, it is likely that this number will increase by fivefold and perhaps even higher. Traditional analysis strategies based on examining one measurement versus another are not suitable for high-dimensional data analysis because the number of measurement combinations expands geometrically with dimension, forming a kind of complexity barrier. This dimensionality barrier limits cytometry and other technologies from reaching their maximum potential in visualizing and analyzing important information embedded in high-dimensional data.

This chapter describes efforts to break through this barrier and allow the visualization and analysis of any number of measurements with a new paradigm called Probability State Modeling (PSM). This new system creates a virtual progression variable based on probability that relates all measurements. PSM can produce a single graph that conveys more information about a sample than hundreds of traditional histograms. These PSM overlays reveal the rich interplay of phenotypic changes in cells as they differentiate. The end result is a deeper appreciation of the molecular genetic underpinnings of ontological processes in complex populations such as found in bone marrow and peripheral blood.

Eventually these models will help investigators better understand normal and abnormal cellular progressions and will be a valuable general tool for the analysis and visualization of high-dimensional data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chattopadhyay, P. K., Price, D. A., Harper, T. F., Betts, M. R., Yu, J., Gostick, E., Perfetto, S. P., Goepfert, P., Koup, R. A., DeRosa, C., Bruchez, M. P., and Roederer, M. (2006) Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nat. Med. 12, 972.

    Article  CAS  Google Scholar 

  2. Perfetto, S. P., Chattopadhyay, P. K., and Roederer, M. (2004) Unravelling the immune system. Nat. Rev. Immunol. 4, 648–55.

    Article  CAS  Google Scholar 

  3. Bandura, D. R., Baranov, V. I., Ornatsky, O. I., Antonov, A., Kinach, R., Lou, X., Pavlov, S., Voroviev, S., Dick, J. E., and Tanner, S. D. (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81, 6813–22.

    Article  CAS  Google Scholar 

  4. Ornatsky, O. I., Lou, X., Nitz, M., Schafer, S., Sheldrick, W. S., Baranov, V. I., Bandura, D. R., and Tanner, S. D. (2008) Study of cell antigens and intracellular DNA by identification of element-containing labels and metallointercalators using inductively coupled plasma mass spectrometry. Anal. Chem. 80, 2539–47.

    Article  CAS  Google Scholar 

  5. Tanner, S. D., Bandura, D. R., Ornatsky, O., Baranov, V. I., Nitz, M., and Winnik, M. A. (2008) Flow cytometer with mass spectrometer detection for massively multiplexed single-cell biomarker assay. Pure Appl. Chem. 80, No. 12, 2627–41.

    Article  CAS  Google Scholar 

  6. Tan, P., Steinback, M. and Kumar, V. (2006) Introduction to Data Mining, Pearson Education, Boston, MA, pp. 51–63.

    Google Scholar 

  7. Baggerly, K. A. (2001) Probability binning and testing agreement between multivariate immunofluorescence histograms: extending the chi-squared test. Cytometry 45, 141–50.

    Article  CAS  Google Scholar 

  8. Roederer, M., Moore, W., Treister, A., Hardy, R. R., and Herzenberg, L. A. (2001) Probability binning comparison: a metric for quantifying multivariate distribution differences. Cytometry 45, 47–55.

    Article  CAS  Google Scholar 

  9. Rogers, W. T., Moser, A. R., Holyst, H. A., Bantly, A., Mohler II, E. R., Scangas, G., and Moore, J. S. (2008) Cytometric fingerprinting: quantitative characterization of multivariate distributions. Cytometry 73A, 430–41.

    Article  Google Scholar 

  10. Kosugi, Y., Sato, R., Genka, S., Shitara, N., and Takakura, K. (1988) An interactive multivariate analysis of FCM data. Cytometry 9, 405–8.

    Article  CAS  Google Scholar 

  11. Lugli, E., Pinti, M., Nasi, M., Troiano, L., Ferraresi, R., Mussi, C., Salviololi, G., Patsekin, V., Robinson, J. P., Djurante, C., Cocchi, M., and Cossarizza, A. (2007) Subject classification obtained by cluster analysis and principal component analysis applied to flow cytometric data. Cytometry Part A 71A, 334–44.

    Article  CAS  Google Scholar 

  12. Bagwell C. B., Horan P., and Lovett, E. (1985) A method for displaying multiparameter flow cytometric listmode data. International Conference Analytical Cytology XI, November, 17–22.

    Google Scholar 

  13. Leary, J. F., Ellis, S. P., McLaughlin, S. R., Corio, M. A., Hespelt, S., Gram, J. G., and Burde, S. (1991) High-resolution separation of rare-cell types, in Cell Separation Science and Technology (Kompala, P. and Todd, P. F., eds.) American Chemical Society Press, Washington, DC, Series No. 464, pp. 26–40.

    Chapter  Google Scholar 

  14. Murphy, R. (1985) Automated identification of subpopulations in flow cytometric list mode data using cluster analysis. Cytometry 6, 302–9.

    Article  CAS  Google Scholar 

  15. Wegman, E.J. and Luo, Q. (1997) High dimensional clustering using parallel coordinates and the grand tour. Comput. Sci. Stat. 28, 352–60.

    Google Scholar 

  16. Preffer, I. F., Dombkowski, D., Sykes, M., Scadden, D., and Yang, Y.-G. (2002) Lineage-negative side-population (SP) cells with restricted hematopoietic capacity circulate in normal human adult blood: immunophenotypic and functional characterization. Stem Cells 20, 417–27.

    Article  CAS  Google Scholar 

  17. Preffer, F. and Dombkowski, D. Advances in complex multiparameter flow cytometry technology: applications in stem cell research (2009) Cytometry Part B 76B, 295–314.

    Article  Google Scholar 

  18. Dean, P. (1990) Data processing, in Flow Cytometry and Sorting (Melamed, M.R., Lindmo, T., and Mendelsohn, M.I., eds.), Wiley-Liss, Hoboken, NJ, pp. 438–40.

    Google Scholar 

  19. Crowell J. M., Hiebert, R. D., Salzman, G. B., Price, M. J., Cram, L. S, and Mullaney, P. F. (1978) A light-scattering system for high-speed cell analysis. IEEE Trans. Biomed. Eng. BME-25, 519–26.

    Google Scholar 

  20. Finn, W. G., Carter, K. M., Raich, R., Stoolman, L., and Hero, A. O. (2009) Analysis of clinical flow cytometric immunophenotyping data by clustering on statistical manifolds: treating flow cytometry data as high-dimensional objects. Cytometry Part B 76B, 1–7.

    Article  Google Scholar 

  21. Chan, C., Feng, F., Ottinger, J., Foster, D., West, M., and Kepler, T. B. (2008) Statistical mixture modeling for cell subtype identification in flow cytometry. Cytometry Part A 73A, 693–701.

    Article  Google Scholar 

  22. Irish, J. M., Hovland, R., Krutzik, P. O., Perez, O. D., Bruserud, O., Gjertsen, B. T., and Nolan, G. P. (2004) Single cell profiling of potentiated phosphor-protein networks in cancer cells. Cell 118, 217–28.

    Article  CAS  Google Scholar 

  23. Boedigheimer, M. J. and Ferbas, J. (2008) Mixture modeling approach to flow cytometry data. Cytometry Part A 73A, 421–29.

    Article  Google Scholar 

  24. Bagwell, C. B. (2007) Probability State Models. Utility Aplication No. US11/897,148, 19 Sep.

    Google Scholar 

  25. Bagwell, C. B. (2008) Breaking the Dimensionality Barrier, in Laboratory Hematology Practice (Kottke-Marchant, K. and Davis, B.H., eds.), Wiley-Blackwell, Hoboken, NJ, Ch 12.

    Google Scholar 

  26. Bagwell, C. B. (2009) Probability State Modeling – a new paradigm for cytometric analysis, in Flow Cytometry In Drug Discovery and Development (Litwin, V. and Marder, P., eds.), John Wiley and Sons, Inc., Hoboken, NJ, Ch 15.

    Google Scholar 

  27. Shapiro, H. M. (2003) Practical Flow Cytometry, 4th edition, Wiley-Liss, Hoboken, NJ, pp. 465–7.

    Book  Google Scholar 

  28. Loken, M. R., Shah, V. O., Dattilio, K. L., and Civin, C. I. (1987) Flow cytometric analysis of human bone marrow. II. Normal B lymphocyte development. Blood 70, 1316–24.

    CAS  Google Scholar 

  29. Loken M. R. and Wells, D. A. (2000) Normal antigen expression in hematopoiesis, in Immenophenotyping (Stewart, C. C. and Nicholson, J. K., eds.), Wiley-Liss, Hoboken, NJ, pp. 138–142.

    Google Scholar 

  30. Wood, B. (2004) Multicolor immunophenotyping: human immune system hematopoiesis. Methods Cell Biol 75, 559–76.

    Article  Google Scholar 

  31. Gentle, J. E. (2003) Transformations of uniform deviates: general methods, in Random Number Generation and Monte Carlo Methods, 2nd edition, Springer Science + Businesss Media, LLC, New York, NY, pp. 101–9.

    Google Scholar 

  32. Bevington, P. R. (1969) Data reduction and error analysis for the physical sciences. McGraw-Hill Book Company, New York, NY, p. 89.

    Google Scholar 

  33. Bevington, P. R. (1969) Data reduction and error analysis for the physical sciences. McGraw-Hill Book Company, New York, NY, p. 245.

    Google Scholar 

  34. Press, W. H., Vetterling, W. T., Teukolsky, S. A., and Flannery, B. P. (1992) Numerical recipes in C, 2nd edition, Cambridge University Press, New York, NY, pp. 408–12.

    Google Scholar 

  35. Bagwell, C. B. and Adams, E. G. (1993) Fluorescence spectral overlap compensation for any number of flow cytometry parameters. Ann NY Acad Sci 677, 167–84.

    Article  CAS  Google Scholar 

  36. Roederer, M. (2001) Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry 45, 194–205.

    Article  CAS  Google Scholar 

  37. Lawrence, H. J., Savageau, G., Largman, C., and Humphries, R. K. (2001) Homeobox gene networks and the regulation of hematopoiesis, in Hematopoiesis : A developmental approach (Zon, L. I., ed.), Oxford University Press, New York, NY, pp. 404–5.

    Google Scholar 

  38. Argiropoulos, B. and Humphries, R. K. (2007) Hox genes in hematopoiesis and leukemogenesis. Oncogene 26, 6766–76.

    Article  CAS  Google Scholar 

  39. Kim, S. I. and Bresnick, E. H. (2007) Transcriptional control of erythropoiesis: emerging mechanisms and principles. Oncogene 26, 6777–94.

    Article  CAS  Google Scholar 

  40. Pronk, C. J., Rossi, D. J., Mansson, R., Attema, J. L., Norddahl, G. L., Chan, C. K. et al. (2007) Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell 1, 428–42.

    Article  CAS  Google Scholar 

  41. McGrath, K. E., Bushnell, T. P., and Palis, J. (2008) Multispectral imaging of hematopoietic cells: where flow meets morphology. J. Immunol. Methods 336, 91–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bagwell, C.B. (2011). Breaking the Dimensionality Barrier. In: Hawley, T., Hawley, R. (eds) Flow Cytometry Protocols. Methods in Molecular Biology, vol 699. Humana Press. https://doi.org/10.1007/978-1-61737-950-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-950-5_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-949-9

  • Online ISBN: 978-1-61737-950-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics