Skip to main content

Isolation and Culture of Human Multipotent Stromal Cells from the Pancreas

  • Protocol
  • First Online:
Mesenchymal Stem Cell Assays and Applications

Part of the book series: Methods in Molecular Biology ((MIMB,volume 698))

Abstract

Mesenchymal stem cells, also termed multipotent mesenchymal stromal cells (MSCs), can be isolated from most adult tissues. Although the exact origin of MSCs expanded from the human pancreas has not been resolved, we have developed protocols to isolate and expand MSCs from human pancreatic tissue that remains after islet procurement. Similar to techniques used to isolate MSCs from bone marrow, pancreatic MSCs are isolated based on their cell adherence, expression of several cell surface antigens, and multilineage differentiation. The protocols for isolating, characterizing, and differentiating MSCs from the pancreas are presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dor, Y., Brown, J., Martinez, O. I., and Melton, D. A. (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46.

    Article  PubMed  CAS  Google Scholar 

  2. Khalaileh, A., Gonen-Gross, T., Magenheim, J., Nir, T., Porat, S., Salpeter, S., Stolovich-Rain, M., Swisa, A., Weinberg, N., and Dor, Y. (2008) Determinants of pancreatic β-cell regeneration. Diabetes Obes. Metab. 10, 128–135.

    Article  PubMed  Google Scholar 

  3. Wang, R. N., Kloppel, G., and Bouwens, L. (1995) Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats. Diabetologia 38, 1405–1411.

    Article  PubMed  CAS  Google Scholar 

  4. D’Alessandro, J. S., Lu, K., Fung, B. P., Colman, A., and Clarke, D. L. (2007) Rapid and efficient in vitro generation of pancreatic islet progenitor cells from nonendocrine epithelial cells in the adult human pancreas. Stem Cells Dev. 16, 75–89.

    Article  PubMed  Google Scholar 

  5. Bonner-Weir, S., Taneja, M., Weir, G. C., Tatarkiewicz, K., Song, K. H., Sharma, A., and O’Neil, J. J. (2000) In vitro cultivation of human islets from expanded ductal tissue. PNAS 97, 7999–8004.

    Article  PubMed  CAS  Google Scholar 

  6. Heremans, Y., Van de Casteele, C. M., in’t Veld, P., Gradwohl, G., Serup, P., Madsen, O., Pipeleers, D., and Heimberg, H. (2002) Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. J. Cell Biol. 159, 303–312.

    Article  PubMed  CAS  Google Scholar 

  7. Xu, X., D’Hoker, J., Stange, G., Bonne, S., De Leu, N., Xiao, X., Van de Casteele, M., Mellitzer, G., Ling, Z., Pipeleers, D., Bouwens, L., Scharfmann, R., Gradwohl, G., and Heimberg, H. (2008) Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132, 197–207.

    Article  PubMed  CAS  Google Scholar 

  8. Yato, S., Dodge, R., Akashi, T., Omer, A., Sharma, A., Weir, G. C., and Bonner-Weir, S. (2007) Differentiation of affinity-purified human pancreatic duct cells to β-cells. Diabetes 56, 1802–1809.

    Article  Google Scholar 

  9. Bonner-Weir, S., Inada, A., Yatoh, S., Li, W., Aye, T., Toschi, E., and Sharma, A. (2008) Transdifferentiation of pancreatic ductal cells to endocrine β-cells. Biochem. Soc. Trans. 36, 353–356.

    Article  PubMed  CAS  Google Scholar 

  10. Inada, A., Nienaber, C., Katsuta, H., Fugitani, Y., Levine, J., Morita, R., Sharma, A., and Bonner-Weir, S. (2008) Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. PNAS 105, 19915–19919.

    Article  PubMed  CAS  Google Scholar 

  11. Hao, E., Tyrberg, B., Itkin-Ansari, P., Lakey, J. R., Geron, I., Monosov, E. Z., Barcova, M., Mercola, M., and Levine, F. (2006) Beta-cell differentiation from nonendocrine epithelial cells of the adult human pancreas. Nature Med. 12, 310–316.

    Article  PubMed  CAS  Google Scholar 

  12. Rooman, I., Lardon, J., and Bouwens, L. (2002) Gastrin stimulates beta-cell neogenesis and increases islet mass from transdifferentiated but not from normal exocrine pancreas tissue. Diabetes 51, 686–690.

    Article  PubMed  CAS  Google Scholar 

  13. Baeyens, L., De Breuck, S., Lardon, J., Mfopou, J. K., Rooman, I., and Bouwens, L. (2005) In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia 48, 49–57.

    Article  PubMed  CAS  Google Scholar 

  14. Baeyens, L., and Boewens, L. (2008) Can β-cells be derived from exocrine pancreas? Diabetes Obes. Metab. 10, 170–178.

    Article  PubMed  Google Scholar 

  15. Lipsett, M. A., Castellarin, M. L., and Rosenberg, L. (2007) Acinar plasticity development of a novel in vitro model to study human acinar-to-duct-to-islet differentiation. Pancreas 34, 452–457.

    Article  PubMed  Google Scholar 

  16. Teitelman, G. (2004) Islet-derived multipotential cells/progenitor cells. Cell Biochem. Biophys. 40, 89–102.

    Article  PubMed  Google Scholar 

  17. Gallo, R., Gambelli, F., Gava, B., Sasdelli, F., Tellone, V., Masini, M., Marchetti, P., Dotta, F., and Sorrentino, V. (2007) Generation and expansion of multipotent mesenchymal progenitor cells from cultured human pancreatic islets. Cell Death. Differ. 14, 1860–1871.

    Article  PubMed  CAS  Google Scholar 

  18. Eberhardt, M., Salmon, P., von Mach, M. A., Hengstler, J. G., Brulport, M., Linscheid, P., Seboek, D., Oberholzer, J., Barbero, A., Martin, I., Muller, B., Trono, D., and Zulewski, H. (2006) Multipotential nestin and Isl-1 positive mesenchymal stem cells isolated from human pancreatic islets. Biochem. Biophys. Res. Commun. 345, 1167–1176.

    Article  PubMed  CAS  Google Scholar 

  19. Gershengorn, M. C., Hardikar, A. A., Wei, C., Geras-Raaka, E., Marcus-Samuels, B., and Raaka, B. M. (2004) Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 306, 2261–2264.

    Article  PubMed  CAS  Google Scholar 

  20. Todorov, I., Omori, K., Pascual, M., Rawson, J., Nair, I., Valiente, L., Vuong, T., Matsuda, T., Orr, C., Ferreri, K., Smith, C. V., Kandeel, F., and Mullen, Y. (2006) Generation of human islets through expansion and differentiation of non-islet pancreatic cells discarded (pancreatic discard) after islet isolation. Pancreas 32, 130–138.

    Article  PubMed  Google Scholar 

  21. Seeberger, K. L., Dufour, J. M., Shapiro, A. M., Lakey, J. R., Rajotte, R. V., Korbutt, G. S. (2006) Expansion of mesenchymal stem cells from human pancreatic ductal epithelium. Lab. Invest. 86, 141–153.

    Article  PubMed  CAS  Google Scholar 

  22. Baertschiger, R. M., Bosco, D., Morel, P., Serre-Beinier, V., Berney, T., Buhler, L. H., and Gonelle-Gispert, C. (2008) Mesenchymal stem cells derived from human exocrine pancreas express transcription factors implicated in beta-cell development. Pancreas 37, 75–83.

    Article  PubMed  CAS  Google Scholar 

  23. Horwitz, E. M., Le Blanc, K., Dominici, M., Mueller I., Slaper-Cortenbach, I., Marini F. C., Deans, R. J., Krause, D. S., and Keating, A. (2005) Clarification of the nomenclature for MSC: The international society for cellular therapy position statement. Cytotherapy 7, 393–395.

    Article  PubMed  CAS  Google Scholar 

  24. Lee, K. D., Kuo, T. K., Whang-Peng, J., Chung, Y. F., Lin, C. T., Chou, S. H., Chen, J.R., Chen, Y. P., and Lee, O. K. (2004) In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 40, 1275–1284.

    Article  PubMed  CAS  Google Scholar 

  25. Seo, M. J., Suh, S. Y., Bae, Y. C., and Jung, J. S. (2005) Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem. Biophys. Res. Commun. 328, 258–264.

    Article  PubMed  CAS  Google Scholar 

  26. Timper, K., Seboek, D., Eberhardt, M., Linscheid, P., Christ-Crain, M., Keller, U., Muller, B., and Zulewski, H. (2006) Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem. Biophys. Res. Commun. 341, 1135–1140.

    Article  PubMed  CAS  Google Scholar 

  27. Battula, V. L., Bareiss, P. M., Treml, S., Conrad, S., Albert, I., Hojak, S., Abele, H., Schewe, B., Just, L., Skutella, T., and Buhring, H. (2007) Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation. Differentiation 75, 279–291.

    Article  PubMed  CAS  Google Scholar 

  28. Tang, D. Q., Cao, L. Z., Burkhardt, B. R., Xia, C. Q., Litherland, S. A., Atkinson, M. A., and Yang, L. J. (2004) In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes 53, 1721–1732.

    Article  PubMed  CAS  Google Scholar 

  29. Oh, S. H., Muzzonigro, T. M., Bae, S. H., LaPlante, J. M., Hatch, H. M., and Petersen, B. E. (2004) Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab. Invest. 84, 607–617.

    Article  PubMed  CAS  Google Scholar 

  30. Russ, H. A., Bary, Y., Ravassard, P., and Efrat, S. (2008) In vitro proliferation of cells derived from adult human ß-cells revealed by cell-lineage tracing. Diabetes 57, 1575–1583.

    Article  PubMed  CAS  Google Scholar 

  31. Atouf, F., Park, C. H., Pechhold, K., Ta, M., Choi,Y., and Lumelsky, N. L. (2007) No evidence for mouse pancreatic beta-cell epithelial-mesenchymal transition in vitro. Diabetes 56, 699–702.

    Article  PubMed  CAS  Google Scholar 

  32. Chase, L. G., Ulloa-Montoya, F., Kidder, B. L., and Verfaillie, C. M. (2007) Islet-derived fibroblast-like cells are not derived via epithelial-mesenchymal transition from Pdx-1 or insulin-positive cells. Diabetes 56, 3–7.

    Article  PubMed  CAS  Google Scholar 

  33. Morton, R. A., Geras-Raaka, E., Wilson, L. M., Raaka, B. M., and Gershengorn, M. C. (2007) Endocrine precursor cells from mouse islets are not generated by epithelial-to-mesenchymal transition of mature beta cells. Mol. Cell Endocrinol. 270, 87–93.

    Article  PubMed  CAS  Google Scholar 

  34. Kayali, A. G., Flores, L. E., Lopez, A. D., Kutlu, B., Baetge, E., Kitamura, R., Hao, E., Beattie, G. M., and Hayek, A. (2007) Limited capacity of human adult islets expanded in vitro to redifferentiate into insulin-producing beta-cells. Diabetes 56, 703–708.

    Article  PubMed  CAS  Google Scholar 

  35. Seeberger, K. L., Eshpeter, A., Rajotte, R. V., and Korbutt, G. S., (2009) Epithelial cells within the human pancreas do not coexpress mesenchymal antigens: epithelial-mesenchymal transition is an artifact of cell culture. Lab. Invest. 89, 110–121.

    Article  PubMed  CAS  Google Scholar 

  36. Lakey, J. R. T., Warnock, G. L., Shapiro, A. M. J., Korbutt, G. S., Ao, Z., Kneteman, N. M., and Rajotte, R. V. (1999) Intraductal collagenase delivery into the human pancreas using syringe loading or controlled perfusion. Cell Transplant. 8, 285–292.

    PubMed  CAS  Google Scholar 

  37. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., and Marshak, D. R. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147.

    Article  PubMed  CAS  Google Scholar 

  38. Pittenger, M. F., and Martin, B. J. (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ. Res. 9, 9–20.

    Article  Google Scholar 

  39. Prockop, D. J., Phinney, D. J., and Bunnell, B. A. (2008) Mesenchymal stem cells: methods and protocols. Methods in Molecular Biology 449, Humana Press, Totowa.

    Book  Google Scholar 

  40. Baxter, M. A., Wynn, R. F., Jowitt, S. N., Wraith, J. E., Fairbairn, L. J., and Bellantuono, I. (2004) Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22, 675–682.

    Article  PubMed  CAS  Google Scholar 

  41. McManus, J.F.A., and Mowry R. (1960) Staining Methods Histological and Histochemical. Paul B Hoeber, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. Korbutt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Seeberger, K.L., Eshpeter, A., Korbutt, G.S. (2011). Isolation and Culture of Human Multipotent Stromal Cells from the Pancreas. In: Vemuri, M., Chase, L., Rao, M. (eds) Mesenchymal Stem Cell Assays and Applications. Methods in Molecular Biology, vol 698. Humana Press. https://doi.org/10.1007/978-1-60761-999-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-999-4_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-998-7

  • Online ISBN: 978-1-60761-999-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics