Skip to main content

Quantification of mRNA Using Real-Time PCR and Western Blot Analysis of MAPK Events in Chondrocyte/Agarose Constructs

  • Protocol
  • First Online:
3D Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 695))

Abstract

In vitro models of chondrocyte mechanobiology have been used to compare the intracellular signalling pathways altered in normal and osteoarthritis-affected cartilage. However, differences in the model system and type of loading configuration have led to complicated pathways. This chapter is a follow-on of previous studies from our group utilising 3D agarose as a physiological model to study mechanotransduction pathways. Experimental methods are described to assess targets at the protein and gene expression level by Western blot analysis and real-time PCR, respectively. This chapter provides a quantitative gene expression approach to explore the intracellular pathways activated by both mechanical loading and inflammatory mediators and examine upstream phosphorylation events. Ultimately, development of methods used to analyse mechano-sensitive pathways will provide important information for the identification of appropriate pharmacological and physiotherapeutic agents for the treatment of osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grodzinsky, A.J., Levenston, M.E., Jin, M., and Frank, E.H. (2000) Cartilage tissue remodeling in response to mechanical forces. Annu. Rev. Biomed. Eng. 2, 691–713.

    Article  PubMed  CAS  Google Scholar 

  2. Millward-Sadler, S.J. and Salter, D.M. (2004) Integrin-dependent signal cascades in chondrocyte mechanotransduction. Ann. Biomed. Eng. 32, 435–446.

    Article  PubMed  CAS  Google Scholar 

  3. Griffin, T.M. and Guilak, F. (2005) The role of mechanical loading in the onset and progression of osteoarthritis. Exerc. Sport Sci. Rev. 33, 195–200.

    Article  PubMed  Google Scholar 

  4. Sah, R., Kim, Y.J., Doong, J.Y.H., Grodzinsky, A.J., Plaas, A.H.K., and Sandy, J.D. (1989) Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 7, 619–636.

    Article  PubMed  CAS  Google Scholar 

  5. Bachrach, N.M., Valhmu, W.B., Stazzone, E., Ratcliffe, A., Lai, W.M., and Mow, V.C. (1995) Changes in proteoglycan synthesis of chondrocytes in articular cartilage are associated with the time-dependent changes in their mechanical environment. J. Biomech. 28, 1561–1569.

    Article  PubMed  CAS  Google Scholar 

  6. Valhmu, W.B., Stazzone, E.J., Bachrach, N.M., Saed-Nejad, F., Fischer, S.G., Mow, V.C., and Ratcliffe, A. (1998) Load-controlled compression of articular cartilage induces a transient stimulation of aggrecan gene expression. Arch. Biochem. Biophys. 353, 29–36.

    Article  PubMed  CAS  Google Scholar 

  7. Ragan, P.M., Badger, A.M., Cook, M., Chin, V.I., Gowen, M., Grodzinsky, A.J., and Lark, M.W. (1999) Down-regulation of chondrocyte aggrecan and type-II collagen gene expression correlates with increases in static compression magnitude and duration. J. Orthop. Res. 17, 836–842.

    Article  PubMed  CAS  Google Scholar 

  8. Blain, E.J., Mason, D.J., and Duance, V.C. (2001) The effect of cyclical compressive loading on gene expression in articular cartilage. Biorheology 40, 111–117.

    Google Scholar 

  9. Lee, J.H., Fitzgerald, J.B., Dimicco, M.A., and Grodzinsky, A.J. (2005) Mechanical injury of cartilage explants causes specific time-dependent changes in chondrocyte gene expression. Arthritis Rheum. 52, 2386–2395.

    Article  PubMed  CAS  Google Scholar 

  10. De Croos, J.N., Dhaliwal, S.S., Grynpas, M.D., Pilliar, R.M., and Kandel, R.A. (2006) Cyclic compressive mechanical stimulation induces sequential catabolic and anabolic gene changes in chondrocytes resulting in increased extracellular matrix accumulation. Matrix Biol. 25, 323–331.

    Article  PubMed  Google Scholar 

  11. Madhavan, S., Anghelina, M., Rath-Deschner B., Wypasek, E., John, A., Deschner, J., Piesco, N., and Agarwal, S. (2006) Biomechanical signals exert sustained attenuation of proinflammatory gene induction in articular chondrocytes. Osteoarthr. cartil. 14, 1023–1032.

    Article  PubMed  CAS  Google Scholar 

  12. Mio, K., Saito, S., Tomatsu, T., and Toyama, Y. (2005) Intermittent compressive strain may reduce aggrecanase expression in cartilage: a study of chondrocytes in agarose gel. Clin. Orthop. Relat. Res. 433, 225–232.

    Article  PubMed  Google Scholar 

  13. Chowdhury, T.T., Bader, D.L., and Lee, D.A. (2001) Dynamic compression inhibits the synthesis of nitric oxide and PGE2 by IL-1β stimulated chondrocytes cultured in agarose constructs. Biochem. Biophys. Res. Commun. 285, 1168–1174.

    Article  PubMed  CAS  Google Scholar 

  14. Chowdhury, T.T., Bader, D.L., and Lee, D.A. (2003) Dynamic compression counteracts IL-1β induced release of nitric oxide and PGE2 by superficial zone chondrocytes cultured in agarose constructs. Osteoarthr. Cartil. 11, 688–696.

    Article  PubMed  CAS  Google Scholar 

  15. Murata, M., Bonassar, L.J., Wright, M., Mankin, H.J., and Towle, C.A. (2003) A role for the interleukin-1 receptor in the pathway linking static mechanical compression to decreased proteoglycan synthesis in surface articular cartilage. Arch. Biochem. Biophys. 413, 229–235.

    Article  PubMed  CAS  Google Scholar 

  16. Fanning, P.J., Emkey, G., Smith, R.J., Grodzinsky, A.J., Szasz, N., and Trippel, S.B. (2003) Mechanical regulation of MAPK signalling in articular cartilage. J. Biol. Chem. 278, 50940–50948.

    Article  PubMed  CAS  Google Scholar 

  17. Fitzgerald, J.B., Jin, M., Dean, D., Wood, D.J., Zheng, M.H., and Grodzinsky, A.J. (2004) Mechanical compression of cartilage explants induces multiple time-dependent gene expression patterns and involves intracellular calcium and cyclic AMP. J. Biol. Chem. 279, 19502–19511.

    Article  PubMed  CAS  Google Scholar 

  18. Hung, C.T., Henshaw, D.R., Wang, C.C., Mauck, R.L., Raia, F., Palmer, G., Chao, P.H., Mow, V.C., Ratcliffe, A., and Valhmu, W.B. (2000) Mitogen-activated protein kinase signaling in bovine articular chondrocytes in response to fluid flow does not require calcium mobilization. J. Biomech. 33, 73–80.

    Article  PubMed  CAS  Google Scholar 

  19. Li, K.W., Wang, A.S., and Sah, R.L. (2003) Microenvironment regulation of extracellular signal-regulated kinase activity in chondrocytes: effects of culture configuration, interleukin-1, and compressive stress. Arthritis Rheum. 48, 689–699.

    Article  PubMed  CAS  Google Scholar 

  20. Zhou, Y., Millward-Sadler, S.J., Lin, H., Robinson, H., Goldring, M., Salter, D.M., and Nuki, G. (2007) Evidence for JNK-dependent up-regulation of proteoglycan synthesis and for activation of JNK1 following cyclical mechanical stimulation in a human chondrocyte culture model. Osteoarthr. Cartil. 15, 884–893.

    Article  PubMed  CAS  Google Scholar 

  21. Agarwal, S., Deschner, J., Long, P., Verma, A., Hofman, C., Evans, C.H., and Piesco, N. (2004) Role of NF-kappaB transcription factors in anti-inflammatory and pro-inflammatory actions of mechanical signals. Arthritis Rheum. 50, 3541–3548.

    Article  PubMed  CAS  Google Scholar 

  22. Guilak, F., Fermor, B., Keefe, F.J., Kraus, V.B., Olson, S.A., Pisetsky, D.S., Setton, L.A., and Weinberg, J.B. (2004) The role of biomechanics and inflammation in cartilage repair and injury. Clin. Orthop. Relat. Res. 423, 17–26.

    Article  PubMed  Google Scholar 

  23. Knight, M.M., Ghori, S.A., Lee, D.A., and Bader, D.L. (1998) Measurement of the deformation of isolated chondrocytes in agarose subjected to cyclic compression. J. Med. Eng. Phys. 20, 684–688.

    Article  CAS  Google Scholar 

  24. Lee, D.A., Knight, M.M., Bolton, J.F., Idowu, B.D., Kayser, M.V., and Bader, D.L. (2000) Chondrocyte deformation within compressed agarose constructs at the cellular and sub-cellular levels. J. Biomech. 33, 81–95.

    Article  PubMed  CAS  Google Scholar 

  25. Lee, D.A., Noguchi, T., Frean, S.P., Lees, P., and Bader, D.L. (2000) The influence of mechanical loading on isolated chondrocytes seeded in agarose constructs. Biorheology 37, 149–161.

    PubMed  CAS  Google Scholar 

  26. Lee, D.A. and Bader, D.L. (1997) Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J. Orthop. Res. 15, 181–188.

    Article  PubMed  Google Scholar 

  27. Lee, D.A. and Knight, M.M. (2004) Mechanical loading of chondrocytes embedded in 3D constructs: in vitro methods for assessment of morphological and metabolic response to compressive strain. Methods Mol. Med. 100, 307–324.

    PubMed  CAS  Google Scholar 

  28. Chowdhury, T.T., Arghandawi, S., Brand, J., Akanji, O.O., Salter, D.M., Bader, D.L., and Lee, D.A. (2008) Dynamic compression counteracts IL-1β induced iNOS and COX-2 expression in chondrocyte/agarose constructs. Arthritis Res. Ther. 10, R35.

    Article  PubMed  CAS  Google Scholar 

  29. Akanji, O.O., Sakthithasan, P., Salter, D.M., and Chowdhury, T.T. (2009) Dynamic compression alters NFκB activation and Iκ-α expression in IL-1β stimulated chondrocyte/agarose constructs. Inflamm. Res. 59(1), 41–52.

    Article  PubMed  Google Scholar 

  30. Raveenthiran, S.P. and Chowdhury, T.T. (2009) Dynamic compression inhibits fibronectin fragment induced iNOS and COX-2 expression in chondrocyte/agarose constructs. Biomech. Model. Mechanobiol. 8(4), 273–283.

    Article  PubMed  CAS  Google Scholar 

  31. Schroeder, A., Mueller, O., Stocker, S., Salowsky, R., Leiber, M., Gassmann, M., Lightfoot, S., Menzel, W., Granzow, M., and Ragg, T. (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol. 7, 3.

    Article  PubMed  Google Scholar 

  32. Auger, H., Lyianarachchi, S., Newsom, D., Klisovic, M.I., Marcucci, G., and Kornacker, K. (2003) Chipping away at the chip bias: RNA degradation in microarray analysis. Nat. Genet. 35, 262–293.

    Google Scholar 

  33. Bustin, S.A. and Nolan, T. (2004) Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J. Biomol. Tech. 15, 155–166.

    PubMed  Google Scholar 

  34. Nolan, T., Hands, R.E., and Bustin, S.A. (2006) Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 1, 1559–1582.

    Article  PubMed  CAS  Google Scholar 

  35. Pfaffl, M.W., Horgan, G.W., and Dempfle, L. (2002) Relative expression software tool (REST) for group wise comparison and statistical analysis of relative expression results in real time PCR. Nucleic Acids Res. 30(9), e36.

    Article  PubMed  Google Scholar 

  36. Yuan, J.S., Wang, D., and Stewart, C.N. (2007) Statistical methods for efficiency adjusted real-time PCR quantification. Biotechnol. J. 3, 112–123.

    Article  Google Scholar 

  37. Karlen, Y., McNair, A., Perseguers, S., Mazza, C., and Mermod, N. (2007) Statistical significance of quantitative PCR. BMC Bioinformatics 8, 131.

    Article  PubMed  Google Scholar 

  38. Fundel, K., Haag, J., Gebhard, P.M., Zimmer, R., and Aigner, T. (2008) Normalization strategies for mRNA expression data in cartilage research. Osteoarthr. Cartil. 16, 947–955.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr Chowdhury would like to thank Drs. Kerry Elliot, Lindsay Ramage, and Ying Zhou for their excellent support at the Queens Medical Research Institute, Edinburgh University. The protocols were developed with funding by the Wellcome Trust (project grant: 073972).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lee, D.A., Brand, J., Salter, D., Akanji, OO., Chowdhury, T.T. (2011). Quantification of mRNA Using Real-Time PCR and Western Blot Analysis of MAPK Events in Chondrocyte/Agarose Constructs. In: Haycock, J. (eds) 3D Cell Culture. Methods in Molecular Biology, vol 695. Humana Press. https://doi.org/10.1007/978-1-60761-984-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-984-0_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-983-3

  • Online ISBN: 978-1-60761-984-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics